First-Principles Study on Stability and Magnetism of MAln (M = Ni, Cu) (n = 1 - 9) Clusters

DOI: 10.4236/wjcmp.2012.24044   PDF   HTML     3,317 Downloads   5,864 Views   Citations


We have investigated the structures, stabilities and magnetism of NiAln and CuAln (n = 1 - 9) clusters systematically by using first-principles density functional theory. Our calculated results indicate that most of the ground state structures for the Al clusters doped with one nickel or copper atom are different from those of the corresponding pure Al clusters. NiAln and CuAln (n = 1 - 9) cluster ions have similar geometrical configurations to the corresponding neutral clusters, except for positive NiAl9 ion. The magnetic moments of NiAln (n = odd number) and CuAln (n = even number) cluster anions, neutrals and cations are 0, 1 μB, and 2 μB, respectively. The magnetic moments of NiAl4 and NiAl6 cluster anions, neutrals and cations are associated with 1 μB, 2 μB, and 3 μB, respectively. NiAl2, NiAl8 and CuAln (n = odd number) clusters do not have any net magnetic moment. But, NiAl2 and NiAl8 cluster ions have the net magnetic moment of 1 μB.

Share and Cite:

B. Li, X. Ren, X. Zhang, Z. Ma, J. Gu and G. Li, "First-Principles Study on Stability and Magnetism of MAln (M = Ni, Cu) (n = 1 - 9) Clusters," World Journal of Condensed Matter Physics, Vol. 2 No. 4, 2012, pp. 267-273. doi: 10.4236/wjcmp.2012.24044.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. L. Fleischer, D. M. Dimidick and H. A. Lipsitt, “Intermetallic Compounds for Strong High-Temperature Materials: Status and Potential,” Annual Review of Materials Science, Vol. 19, 1989, pp. 231-263. Hdoi:10.1146/
[2] A. N. Mansour, A. Dmitrienko and A. V. Soldatov, “Electronic Structure of Ni3Al and NiAl3 Alloys: mX-Ray-Absorption Fine-Structure Analysis,” Physical Review B, Vol. 55, No. 23, 1997, pp. 15531-15536. Hdoi:10.1103/PhysRevB.55.15531
[3] B. Grushko and T. Ya. Velikanova, “Stable and Meta- stable Quasicrystals in Al-Based Alloy Systems with Transition Metals,” Journal of Alloys and Compounds, Vol. 367, No. 1-2, 2004, pp. 58-63. Hdoi:10.1016/j.jallcom.2003.08.012
[4] H. S. Park, “Stress-Induced Martensitic Phase Transformation in Intermetallic Nickel Aluminum Nanowires,” Nano Letters, Vol. 6, No. 5, 2006, pp. 958-962.
[5] S. M. Shpiro, B. X. Yang, G. Shirane, Y. Noda and L. E. Tanner, “Neutron Scattering Study of the Martensitic Transformation in a Ni-Al β-Phase Alloy,” Physical Review Letters, Vol. 62, No. 11, 1989, pp. 1298-1301. Hdoi:10.1103/PhysRevLett.62.1298
[6] S. Rubini and P. Ballone, “Phonon Localization and Martensitic Transformation in NixAl1-x Alloys,” Physical Review B, Vol. 50, No. 2, 1994, pp. 1297-1300. Hdoi:10.1103/PhysRevB.50.1297
[7] J. Q. Wen, Z. Y. Jiang, J. Q. Li, L. K. Cao and S. Y. Chu, “Geometrical Structures, Electronic States, and Stability of NinAl Clusters,” International Journal of Quantum Chemistry, Vol. 110, No. 7, pp. 1368-1375.
[8] M. Wang, X. W. Huang, Z. L. Du and Y. C. Li, “Structural, Electronic, and Magnetic Properties of a Series of Aluminum Clusters Doped with Various Transition Metals,” Chemical Physics Letters, Vol. 480, No. 4-6, 2009, pp. 258-264. Hdoi:10.1016/j.cplett.2009.09.027
[9] M. D. Deshpande, R. Pandey, M. A. Blanco and A. Khalkar, “Magnetic Properties of ?Ni13?nAln Clusters with n = 0 - 13,” Journal of Nanoparticle Research, Vol. 12, No. 4, 2010, pp. 1129-1136. Hdoi:10.1007/s11051-009-9654-6
[10] M. S. Bailey, N. T. Wilson, C. Roberts and R. L. Johnston, “Structures, Stabilities and Ordering in Ni-Al Nanoalloy Clusters,” The European Physical Journal D, Vol. 25, No. 1, 2003, pp. 41-55. Hdoi:10.1140/epjd/e2003-00218-2
[11] A. D. Becke, “Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior,” Physical Review A, Vol. 38, No. 6, 1988, pp. 3098-3100. Hdoi:10.1103/PhysRevA.38.3098
[12] J. P. Perdew, “Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas,” Physical Review B, Vol. 33, No. 12, 1986, pp. 8822-8824. Hdoi:10.1103/PhysRevB.33.8822
[13] ADF, “SCM, Theoretical Chemistry,” Vrije Universiteit, Amsterdam, 2007.
[14] X. J. Ren and B. X. Li, “First-Principles Study on Stability and Magnetism of AlnZn (n = 1 - 9) Clusters,” Physica B, Vol. 405, No. 9, 2010, pp. 2344-2349 Hdoi:10.1016/j.physb.2010.02.045
[15] P. H. T. Philipsen and E. J. Baerends, “Cohesive Energy of 3d Transition Metals: Density Functional Theory Atomic and Bulk Calculations,” Physical Review B, Vol. 54, No. 8, 1996, pp. 5326-5333. Hdoi:10.1103/PhysRevB.54.5326
[16] F.-C. Chuang, C. Z. Wang and K. H. Ho, “Structure of Neutral Aluminum Clusters Aln (2 ≤ n ≤ 23): Genetic Algorithm Tight-Binding Calculations,” Physical Review B, Vol. 73, No. 12, 2006, pp. 1-7.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.