Oxidative DNA damages by chemical exposures at work


Oxidative DNA damage is an inevitable consequence of cellular metabolism, with a propensity for increased levels following toxic insult. Of the molecules subject to oxidative modification, DNA has received the greatest attention, with biomarkers of exposure and effect closest to validation. There are many chemicals in workplaces that could cause oxidative DNA damages such as carcinogens. This review concentrated on studies published between the years 2000 and 2012 that used to detect 8-oxodG in humans (workers), laboratory animals and in cell lines. Given the recent toxicological results from oxidative stress, it is important to review these studies to improve the current understanding of the oxidative DNA damages by chemical exposures at work. It also suggests that biomarkers may be responsible for understanding the role of oxidative DNA damage in disease, highlighting the need for further studies.

Share and Cite:

Rim, K. (2012) Oxidative DNA damages by chemical exposures at work. Advances in Bioscience and Biotechnology, 3, 957-971. doi: 10.4236/abb.2012.327118.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Evans, M.D., Cooke, M.S. (2004) Factors contributing to the outcome of oxidative damage to nucleic acids. Bio-Essays, 26, 533-542. doi:10.1002/bies.20027
[2] Valko, M., Morris, H. and Cronin, M.T. (2005) Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12, 1161-1208. doi:10.2174/0929867053764635
[3] Lee, J.C., Son, Y.O., Pratheeshkumar, P. and Shi X. (2012) Oxidative stress and metal carcinogenesis. Free Radical Biology & Medicine, 53, 742-757. doi:10.1016/j.freeradbiomed.2012.06.002
[4] Swaran, J.S.F. (2011) Arsenic-induced oxidative stress and its reversibility. Free Radical Biology and Medicine, 51, 257-281. doi:10.1016/j.freeradbiomed.2011.04.008
[5] Rossner, P. Jr, Sram, R.J. (2012) Immunochemical detection of oxidatively damaged DNA. Free Radical Research, 46, 492-522. doi:10.3109/10715762.2011.632415
[6] Azqueta, A., Lorenzo, Y. and Collins, A.R. (2009) In vitro comet assay for DNA repair: a warning concerning application to cultured cells. Mutagenesis, 24, 379-381. doi:10.1093/mutage/gep009
[7] Rim, K.T. and Kim, S.J. (2010) Prevention of occupational cancer with phyto-chemicals. Cancer Prevention Research, 15, 1-18.
[8] Liviac, D., Creus, A. and Marcos, R. (2009) Genotoxicity analysis of two halonitromethanes, a novel group of disinfection by-products (DBPs), in human cells treated in vitro. Environmental Research, 109, 232-238. doi:10.1016/j.envres.2008.12.009
[9] Chen, S.C., Chen, C.H., Tioh, Y.L., Zhong, P.Y., Lin, Y.S. and Chye, S.M. (2010) Paraphenylenediamine induced DNA damage and apoptosis through oxidative stress and enhanced caspase-8 and -9 activities in Mardin-Darby canine kidney cells. Toxicology in Vitro, 24, 1197-1202. doi:10.1016/j.tiv.2010.02.011
[10] Xie, W., Wang, K., Robertson, L.W. and Ludewig, G. (2010) Investigation of mechanism(s) of DNA damage induced by 4-monochlorobiphenyl (PCB3) metabolites. Environment International, 36, 950-961. doi:10.1016/j.envint.2009.12.004
[11] Michalowicz, J. and Majsterek, I. (2010) Chlorophenols, chlorocatechols and chloroguaiacols induce DNA base oxidation in human lymphocytes (in vitro). Toxicology, 268, 171-175. doi:10.1016/j.tox.2009.12.009
[12] Landvik, N.E., Arlt, V.M., Nagy, E., Solhaug, A., Tekpli, X., Schmeiser, H.H., et al. (2010) 3-Nitrobenzanthrone and 3-aminobenzanthrone induce DNA damage and cell signalling in Hepa1c1c7 cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 684, 11-23.
[13] Ovrevik, J., Arlt, V.M., Oya, E., Nagy, E., Mollerup, S., Phillips, D.H., et al. (2010) Differential effects of nitro-PAHs and amino-PAHs on cytokine and chemokine responses in human bronchial epithelial BEAS-2B cells. Toxicology and Applied Pharmacology, 242, 270-280. doi:10.1016/j.taap.2009.10.017
[14] Barillet, S., Jugan, M.L., Laye, M., Leconte, Y., Herlin-Boime, N., Reynaud, C., et al. (2010) In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: Cyto-, genotoxicity and oxidative stress. Toxicology Letters, 198, 324-330. doi:10.1016/j.toxlet.2010.07.009
[15] Zhang, M., Lu, Y., Li, X., Chen, Q., Lu, L., Xing, M., et al. (2010) Studying the cytotoxicity and oxidative stress induced by two kinds of bentonite particles on human B lymphoblast cells in vitro. Chemico-Biological Interactions, 183, 390-396. doi:10.1016/j.cbi.2009.11.023
[16] Zhang, Y., Jiang, L., Jiang, L., Geng, C., Li, L., Shao, J., et al. (2011) Possible involvement of oxidative stress in potassium bromate-induced genotoxicity in human HepG2 cells. Chemico-Biological Interactions, 189, 186-191. doi:10.1016/j.cbi.2010.12.011
[17] Rodríguez-Mercado, J.J., Mateos-Nava, R.A. and Altamirano-Lozano, M.A. (2011) DNA damage induction in human cells exposed to vanadium oxides in vitro. Toxicology in Vitro, 25, 1996-2002. doi:10.1016/j.tiv.2011.07.009
[18] Panda, K.K., Achary, V.M., Krishnaveni, R., Padhi, B.K., Sarangi, S.N., Sahu, S.N., et al. (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicology in Vitro, 25, 1097-1105. doi:10.1016/j.tiv.2011.03.008
[19] Asare, N., Instanes, C., Sandberg, W.J., Refsnes, M., Schwarze, P., Kruszewski, M., et al. (2012) Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology, 291, 65-72. doi:10.1016/j.tox.2011.10.022
[20] Rim, K.T., Kim, S.J., Han, J.H., Kang, M.G., Kim, J.K. and Yang, J.S. (2011) Effects of carbon black to inflammation and oxidative DNA damages in mouse macrophages. Molecular & Cellular Toxicology, 7, 415-423. doi:10.1007/s13273-011-0052-7
[21] Harris, R.M, Williams, T.D., Hodges, N.J. and Waring, R.H. (2011) Reactive oxygen species and oxidative DNA damage mediate the cytotoxicity of tungsten-nickel-cobalt alloys in vitro. Toxicology and Applied Pharmacology, 250, 19-28. doi:10.1016/j.taap.2010.09.020
[22] Nemmiche, S., Chabane-Sari, D., Kadri, M. and Guiraud, P. (2011) Cadmium chloride-induced oxidative stress and DNA damage in the human Jurkat T cell line is not linked to intracellular trace elements depletion. Toxicology in Vitro, 25, 1191-198. doi:10.1016/j.tiv.2010.10.018
[23] Magdolenova, Z., Bilanicová, D., Pojana, G., Fjellsba, L.M., Hudecova, A., Hasplova, K., et al. (2012) Impact of agglomeration and different dispersions of titanium dioxide nanoparticles on the human related in vitro cytotoxicity and genotoxicity. Journal of Environmental Monitoring, 14, 455-464. doi:10.1039/c2em10746e
[24] Ursini, C.L., Cavallo, D., Fresegna, A.M., Ciervo, A., Maiello, R., Buresti, G., et al. (2012) Comparative cytogenotoxicity assessment of functionalized and pristine multiwalled carbon nanotubes on human lung epithelial cells. Toxicology in Vitro, 26, 831-840. doi:10.1016/j.tiv.2012.05.001
[25] Zhai, Q., Duan, H., Wang, Y., Huang, C., Niu, Y., Dai, Y., et al. (2012) Genetic damage induced by organic extract of coke oven emissions on human bronchial epithelial cells. Toxicology in Vitro, 26, 752-758. doi:10.1016/j.tiv.2012.04.001
[26] Knasmüller, S., De-Marini, D.M., Johnson, I. and Gerhauser, C. (2009) Chemoprevention of cancer and DNA damage by dietary factors, Wiley-VCH. Thomson Digital, Noida, 240-241.
[27] Rim, K.T., Kim, S.J., Chung, Y.H., Kim, H.Y., Maeng, S.H. and Yu. I.J. (2007) DNA damages with Fpg/Endo Ⅲ FLARE Assay in cynomolgus monkeys exposed to stainless steel welding fume. Journal of Korean Society and Occupation Environmental Hygiene, 17, 272-281.
[28] Kim, S.J., Rim, K.T., Lee, S.B. and Kim. H.Y. (2008) Measurement of DNA Damage with Fpg/Endo III FLARE Assay and Real Time RT-PCR in SD Rats Exposed Cumene. Molecular & Cellular Toxicology, 4, 211-217.
[29] Tawfeeq, M.M., Suzuki, T., Shimamoto, K., Hayashi, H., Shibutani, M. and Mitsumori K. (2011) Evaluation of in vivo genotoxic potential of fenofibrate in rats subjected to two-week repeated oral administration. Archives of Toxicology, 85, 1003-1011. doi:10.1007/s00204-010-0628-3
[30] Saquib, Q., Attia, S.M., Siddiqui, M.A., Aboul-Soud, M.A.M., Al-Khedhairy, A.A., Giesy, J.P., et al. (2012) Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats. Toxicology and Applied Pharmacology, 259, 54-65. doi:10.1016/j.taap.2011.12.006
[31] Lindeman, B., Maass, C., Duale, N., Gützkow, K.B., Brunborg, G. and Andreassen, A. (2012) Effects of per- and polyfluorinated compounds on adult rat testicular cells following in vitro exposure. Reproductive Toxicology, 33, 531-537. doi:10.1016/j.reprotox.2011.04.001
[32] Gaté, L., Micillino, J.C., Sébillaud, S., Langlais, C., Cosnier, F., Nunge, H., et al. (2012) Genotoxicity of styrene-7,8-oxide and styrene in Fisher 344 rats: A 4-week inhalation study. Toxicology Letters, 211, 211-219. doi:10.1016/j.toxlet.2012.03.796
[33] Kisby, G.E., Muniz, J.F., Scherer, J., Lasarev, M.R., Koshy, M., Kow, Y.W., et al. (2009) Oxidative stress and DNA damage in agricultural workers. Journal of Agro-medicine, 14, 206-214. doi:10.1080/10599240902824042
[34] Atherton, K.M, Williams, F.M., Egea González, F.J., Glass, R., Rushton, S., Blain, P.G. and Mutch, E. (2009) DNA damage in horticultural farmers: A pilot study showing an association with organophosphate pesticide exposure. Biomarkers, 14, 443-451. doi:10.3109/13547500903137265
[35] Simoniello, M.F., Kleinsorge, E.C., Scagnetti, J.A., Mastandrea, C., Grigolato, R.A., Paonessa, A.M., et al. (2010) Biomarkers of cellular reaction to pesticide exposure in a rural population. Biomarkers, 15, 52-60. doi:10.3109/13547500903276378
[36] Liu, H.H., Lin, M.H., Liu, P.C., Chan, C.I. and Chen, H.L. (2009) Health risk assessment by measuring plasma malondialdehyde (MDA), urinary 8-hydroxydeoxyguanosine (8-OH-dG) and DNA strand breakage following metal exposure in foundry workers. Journal of Hazardous Materials, 170, 699-704. doi:10.1016/j.jhazmat.2009.05.010
[37] Liu, H.H., Lin, M.H., Chan, C.I. and Chen, H.L. (2010) Oxidative damage in foundry workers occupationally co-exposed to PAHs and metals. International Journal of Hygiene and Environmental Health, 213, 93-98. doi:10.1016/j.ijheh.2009.12.005
[38] Bagryantseva, Y., Novotna, B., Rossner Jr, P., Chvatalova, I., Milcova, A., Svecova, V., et al. (2010) Oxidative damage to biological macromolecules in Prague bus drivers and garagemen: Impact of air pollution and genetic polymorphisms. Toxicology Letters, 199, 60-68. doi:10.1016/j.toxlet.2010.08.007
[39] Chen, H.L., Chen, I.J. and Chia, T.P. (2010) Occupational exposure and DNA strand breakage of workers in bottom ash recovery and fly ash treatment plants. Journal of Hazardous Materials, 174, 23-27. doi:10.1016/j.jhazmat.2009.09.010
[40] Grover, P., Rekhadevi, P.V., Danadevi, K., Vuyyuri, S.B., Mahboob, M. and Rahman, M.F. (2010) Genotoxicity evaluation in workers occupationally exposed to lead. Int International Journal of Hygiene and Environmental Health, 213, 99-106. doi:10.1016/j.ijheh.2010.01.005
[41] Hanova, M., Stetina, R., Vodickova, L., Vaclavikova, R., Hlavac, P., Smerhovsky, Z., et al. (2010) Modulation of DNA repair capacity and mRNA expression levels of XRCC1, hOGG1 and XPC genes in styrene-exposed workers. Toxicology and Applied Pharmacology, 248, 194-200. doi:10.1016/j.taap.2010.07.027
[42] Rossner Jr., P., Rossnerova, A. and Sram, R.J. (2011) Oxidative stress and chromosomal aberrations in an environmentally exposed population. Mutation Research/ Fundamental and Molecular Mechanisms of Mutagenesis, 707, 34-41.
[43] Cassini, C., Calloni, C., Bortolini, G., Garcia, S.C., Dornelles, M.A., Henriques, J.A., et al. (2011) Occupational risk assessment of oxidative stress and geno-toxicity in workers exposed to paints during a working week. International Journal of Occupational and Environmental Health, 24, 308-319. doi:10.2478/s13382-011-0030-2
[44] Wang, J., Luo, X., Xu, B., Wei, J., Zhang, Z. and Zhu, H. (2011) Elevated oxidative damage in kitchen workers in Chinese restaurants. rnal of Occupational Health, 53, 327-333. doi:10.1539/joh.11-0074-OA
[45] Sellappa, S., Mani, B. and Keyan, K.S. (2011) Cytogenetic biomonitoring of road paving workers occupationally exposed to polycyclic aromatic hydrocarbons. Asian Pacific Journal of Cancer Prevention, 12(3), 713-7.
[46] Al Zabadi, H., Ferrari, L., Sari-Minodier, I., Kerautret, M.A., Tiberguent, A., Paris, C., et al. (2011) Integrated exposure assessment of sewage workers to genotoxicants: An urinary biomarker approach and oxidative stress evaluation. Environmental Health, 10, 23. doi:10.1186/1476-069X-10-23
[47] Marczynski, B., Raulf-Heimsoth, M., Spickenheuer, A., Pesch, B., Kendzia, B., Mensing, T., et al. (2011) DNA adducts and strand breaks in workers exposed to vapours and aerosols of bitumen: associations between exposure and effect. Archives of Toxicology, 1, S53-S64. doi:10.1007/s00204-011-0682-5
[48] Singh, S., Kumar, V., Thakur, S., Banerjee, B.D., Chandna, S., Rautela, R.S., et al. (2011) DNA damage and cholinesterase activity in occupational workers exposed to pesticides. Environmental Toxicology and Pharmacology, 31, 278-285. doi:10.1016/j.etap.2010.11.005
[49] Wrońska-Nofer, T., Nofer, J.R., Jajte, J., Dziubaltowska, E., Szymczak, W., Krajewski, W., et al. (2012) Oxidative DNA damage and oxidative stress in subjects occupationally exposed to nitrous oxide (N2O). Mutation Research/ Fundamental and Molecular Mechanisms of Mutagenesis, 731, 58-63.
[50] Spanou, C., Bourou, G., Dervishi, A., Aligiannis, N., Angelis, A., Komiotis, D., et al. (2008) Anti-oxidant and chemopreventive properties of polyphenolic compounds derived from Greek legume plant extracts. Journal of Agricultural and Food Chemistry, 56, 6967-6976. doi:10.1021/jf800842p
[51] Kim, J.K., Kim, S.J., Rim, K.T., Cho, H.W., Kim, H.Y. and Yang, J.S. (2009) Anti-mutagenic Effects of Ginsenoside Rb1, Rg1in the CHO-K1 Cells by Benzo[a]pyrene with Chromosomal Aberration Test and Comet Assay. Molecular & Cellular Toxicology, 5, 126-132.
[52] Bouhlel, I., Bhouri, W., Limem, I., Boubaker, J., Nefatti, A., Skandrani, I., et al. (2009) Cell protection induced by Acacia salicina extracts: Inhibition of genotoxic damage and determination of its antioxidant capacity. Drug and Chemical Toxicology, 32, 139-149. doi:10.1080/01480540802593899
[53] Cho, E.S., Jang, Y.J., Hwang, M.K., Kang, N.J., Lee, K.W. and Lee, H.J. (2009) Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals. Mutation Research, 661, 18-24. doi:10.1016/j.mrfmmm.2008.10.021
[54] Kalim, M.D., Bhattacharyya, D., Banerjee, A. and Chattopadhyay, S. (2010) Oxidative DNA damage preventive activity and antioxidant potential of plants used in Unani system of medicine. BMC Complementary and Alternative Medicine, 10, 77. doi:10.1186/1472-6882-10-77
[55] Biswas, J., Sinha, D., Mukherjee, S., Roy, S., Siddiqi, M. and Roy, M. (2010) Curcumin protects DNA damage in a chronically arsenic-exposed population of West Bengal. Human & Experimental Toxicology, 29, 513-524. doi:10.1177/0960327109359020
[56] Alimi, H., Hfaiedh, N., Bouoni, Z., Sakly, M. and Ben, R. K. (2011) Evaluation of antioxidant and antiulcerogenic activities of Opuntia ficus indica f. inermis flowers extract in rats. Environmental Toxicology and Pharmacology, 32, 406-416. doi:10.1016/j.etap.2011.08.007
[57] Zaabat, N., Hay, A.E., Michalet, S., Darbour, N., Bayet, C., Skandrani, I., et al. (2011) Antioxidant and antigenotoxic properties of compounds isolated from Marrubium deserti de Noé. Food and Chemical Toxicology, 49, 3328-35. doi:10.1016/j.fct.2011.08.026
[58] Cuello, S., Alberto, M.R., Zampini, I.C., Ordonez, R.M. and Isla, M.I. (2011) Comparative study of antioxidant and anti-inflammatory activities and genotoxicity of alcoholic and aqueous extracts of four Fabiana species that grow in mountainous area of Argentina. J Ethnopharmacol, 137, 512-522. doi:10.1016/j.jep.2011.06.005
[59] Grotto, D., Vicentini, J., Angeli, J.P.F., Latorraca, E.F., Monteiro, P.A.P., Barcelos, G.R.M., et al. (2011) Evaluation of protective effects of fish oil against oxidative damage in rats exposed to methylmercury. Ecotoxicology and Environmental Safety, 74, 487-493. doi:10.1016/j.ecoenv.2010.10.012
[60] Wang, T.C., Song, Y.S., Wang, H., Zhang, J., Yu, S.F., Gu, Y.E., et al. (2012) Oxidative DNA damage and global DNA hypomethylation are related to folate deficiency in chromate manufacturing workers. Journal of Hazardous Materials, 213-214, 440-446. doi:10.1016/j.jhazmat.2012.02.024
[61] Pal, M. and Ghosh, M. (2012) Prophylactic effect of α-linolenic acid and α-eleostearic acid against MeHg induced oxidative stress, DNA damage and structural changes in RBC membrane. Food and Chemical Toxicology, 50, 2811-2818. doi:10.1016/j.fct.2012.05.038
[62] Schmelzer, C. and Doring, F. (2012) Micronutrient special issue: Coenzyme Q10 requirements for DNA damage prevention. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 733, 61-68.
[63] Sram, R.J., Binkova, B. and Rossner Jr., P. (2012) Vitamin C for DNA damage prevention. Mutation Research/ Fundamental and Molecular Mechanisms of Mutagenesis, 733, 39-49.
[64] Serpeloni, J.M., Barcelos, G.R.M., Angeli, J.P.F., Mercadante, A.Z., Bianchi, M.L.P., Antunes, L.M.G. (2012) Dietary carotenoid lutein protects against DNA damage and alterations of the redox status induced by cisplatin in human derived HepG2 cells. Toxicology in Vitro, 26, 288-294. doi:10.1016/j.tiv.2011.11.011
[65] Gatz, S.A.and Wiesmüller, L. (2008) Take a break—Resveratrol in action on DNA. Carcinogenesis, 29, 321-332. doi:10.1093/carcin/bgm276
[66] Choi, H.Y., Chong, S.A. and Nam, M.J. (2009) Resveratrol induces apoptosis in human SK-HEP-1 hepatic cancer cells. Cancer Genomics Proteomics, 6, 263-268.
[67] Yan, Y., Yang, J.Y., Mou, Y.H., Wang, L.H., Zhou, Y.N. and Wu, C.F. (2012) Differences in the activities of resveratrol and ascorbic acid in protection of ethanol-induced oxidative DNA damage in human peripheral lymphocytes. Food and Chemical Toxicology, 50, 168-174. doi:10.1016/j.fct.2011.10.046
[68] Liu, H., Guo, Z., Xu, L. and Hsu, S. (2008) Protective effect of green tea polyphenols on tributyltin-induced oxidative damage detected by in vivo and in vitro models. Environmental Toxicology, 23, 77-83. doi:10.1002/tox.20312
[69] Gradecka-Meesters, D., Palus, J., Prochazka, G., Segerback, D., Dziubaltowska, E., Kotova, N., et al. (2011) Assessment of the protective effects of selected dietary anticarcinogens against DNA damage and cytogenetic effects induced by benzo[a]pyrene in C57BL/6J mice. Food and Chemical Toxicology, 49, 1674-1683. doi:10.1016/j.fct.2011.02.021
[70] Tan, X., Zhao, C., Pan, J., Shi, Y., Liu, G., Zhou, B. et al. (2009) In vivo non-enzymatic repair of DNA oxidative damage by polyphenols. Cell Biology International, 33, 690-696. doi:10.1016/j.cellbi.2009.03.005
[71] Das, S., Rao, B.N. and Rao, B.S.S. (2011) Mangiferin attenuates methylmercury induced cytotoxicity against IMR-32, human neuroblastoma cells by the inhibition of oxidative stress and free radical scavenging potential. Chemico Biological Interactions, 193, 129-140. doi:10.1016/j.cbi.2011.06.002
[72] Wang, D., Luo, X., Zhong, Y., Yang, W., Xu, M., Liu, Y., et al. (2012) Puerh black tea extract supplementation attenuates the oxidative DNA damage and oxidative stress in Sprague–Dawley rats with renal dysfunction induced by subchronic 3-methyl-2-quinoxalin benzenevinylketo-1,4-dioxide exposure. Food and Chemical Toxicology, 50, 147-154. doi:10.1016/j.fct.2011.10.069
[73] Halliwell, B. (2000) Why and how should we measure oxidative DNA damage in nutritional studies? How far have we come? The American Journal of Clinical Nutrition, 72, 1082-1087.
[74] Au, W.W., Giri, A.K. and Ruchirawat, M. (2010) Challenge assay: A functional biomarker for exposure-induced DNA repair deficiency and for risk of cancer. International Journal of Hygiene and Environmental Health, 213, 32-39. doi:10.1016/j.ijheh.2009.09.002
[75] Fracasso, M.E., Doria, D., Bartolucci, G.B., Carrieri, M., Lovreglio, P., Ballini, A., et al. (2010) Low air levels of benzene: Correlation between biomarkers of exposure and genotoxic effects. Toxicology Letters, 192, 22-28. doi:10.1016/j.toxlet.2009.04.028
[76] Ginsberg, G., Angle, K., Guyton, K. and Sonawane, B. (2011) Polymorphism in the DNA repair enzyme XRCC1: Utility of current database and implications for human health risk assessment. Mutation Research/Reviews in Mutation Research, 727, 1-15. doi:10.1016/j.mrrev.2011.02.001
[77] Ruchko, M.V., Gorodnya, O.M., Zuleta, A., Pastukh, V.M. and Gillespie, M.N. (2011) The DNA glycosylase Ogg1 defends against oxidant-induced mtDNA damage and apoptosis in pulmonary artery endothelial cells. Free Radical Biology and Medicine, 50, 1107-1113. doi:10.1016/j.freeradbiomed.2010.10.692
[78] Singh, S., Kumar, V., Vashisht, K., Singh, P., Banerjee, B.D., Rautela, R.S., et al. (2011) Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides. Toxicology and Applied Pharmacology, 257, 84-92. doi:10.1016/j.taap.2011.08.021
[79] Jensen, A., Lohr, M., Eriksen, L., Gronbak, M., Dorry, E., Loft, S., et al. (2012) Influence of the OGG1 Ser326Cys polymorphism on oxidatively damaged DNA and repair activity. Free Radical Biology and Medicine, 52, 118-25. doi:10.1016/j.freeradbiomed.2011.09.038
[80] Simonelli, V., Mazzei, F., D’Errico, M. and Dogliotti, E. (2012) Gene susceptibility to oxidative damage: From single nucleotide polymorphisms to function. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 731, 1-13.
[81] Markkanen, E., Hübscher, U. and van Loon, B. (2012) Regulation of oxidative DNA damage repair: the adenine: 8-oxoguanine problem. Cell Cycle, 11, 1070-1075. doi:10.4161/cc.11.6.19448
[82] Loft, S., Danielsen, P., Lohr, M., Jantzen, K., Hemmingsen, J.G., Roursgaard, M., et al. (2012) Urinary excretion of 8-oxo-7,8-dihydroguanine as biomarker of oxidative damage to DNA. Archives of Biochemistry and Biophysics, 518, 142-150. doi:10.1016/j.abb.2011.12.026
[83] Dusinska, M., Staruchova, M., Horska, A., Smolkova, B., Collins, A., Bonassi, S., Volkovova, K. (2012) Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, in press.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.