Effect of Prior-Heat Treatments on the Creep Behavior of an Industrial Drawn Copper


The effect of prior-heat treatments at 500℃, 600℃ and 700℃ on the creep behavior of an industrial drawn copper has been studied under constant stresses (98, 108 and 118 MPa) and temperatures (290℃ and 340℃). The results revealed that the creep behavior and the creep life of the material depend strongly on these prior-heat treatments. The apparent activation energy Qc for different creep tests of a drawn copper wire was calculated. The fracture mechanism of the material is characterized using optical microscopy.

Share and Cite:

Z. Boumerzoug, S. Gareh and A. Beribeche, "Effect of Prior-Heat Treatments on the Creep Behavior of an Industrial Drawn Copper," World Journal of Condensed Matter Physics, Vol. 2 No. 4, 2012, pp. 241-245. doi: 10.4236/wjcmp.2012.24041.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. Wilshire, “Observations, Theories and Predictions of High Temperature Creep Behaviour,” Metallurgical and Materials Transactions A, Vol. 33, No. 2, 2002, pp. 241-248. doi:10.1007/s11661-002-0086-5
[2] J. H. Schneibel, R. L. Coble and R. M. Cannon, “The Role of Grain Size Distributions in Diffusional Creep,” Acta Metallurgica, Vol. 29, No. 7, 1981, pp. 1285-1290. doi:10.1016/0001-6160(81)90019-5
[3] P. M. Hazzledine and J. H. Scheibel, “Theory of Coble Creep for Irregular Grain Structures,” Acta Metallurgica et Materialia, Vol. 41, No. 4, 1993, pp. 1253-1262. doi:10.1016/0956-7151(93)90176-S
[4] B. Burton, “A Theoretical Upper Limit to Coble Creep Strain Resulting from Concurrent Grain Growth,” Journal of Materials Science, Vol. 28, No. 18, 1993, pp. 4900-4903. doi:10.1007/BF00361153
[5] P. A. Thorsen and J. B. Sorensen, “Deposition of Material at Grain Boundaries in Tension Interpreted in Terms of Diffusional Creep,” Materials Science and Engineering: A, Vol. 265, No. 1-2, 1999, pp. 140-145. doi:10.1016/S0921-5093(98)01139-3
[6] B. Burton and W. B. Beere, “Grain Boundary Diffusional Creep of Materials Containing Particles,” Philosophical Magazine A, Vol. 43, No. 6, 1981, pp. 1561-1568. doi:10.1080/01418618108239527
[7] V. Callcut, “High Copper Alloys-High Strength Coppers for Demanding Electrical Applications,” 2006. http://www.copper.org/publications/newsletters/innovations/2006/09/high_cu_alloys.html
[8] P. Regnier and M. F. Felsen, “Influence of Burning Grain Boundaries on the Creep Rate of Diffusion to Son Bamboo Structure and Determination of the Corresponding Surface Tensio,” Philosophical Magazine A, Vol. 43, No. 1, 1981, pp. 11-27. doi:10.1080/01418618108239390
[9] M. C. Inman, D. McLean and H. R. Tipler, “Interfacial Free Energy of Copper Antimony Alloys,” Proceedings of the Royal Society of London, Vol. 273, 1963, p. 538.
[10] J. H. Hoage, “Surface Tension Studies on Uranium and Copper,” US Atomic Commission Report HW-78132, 1963.
[11] H. Udin, A. J. Shaler and J. Wulff, “The Surface Tension of Solid Copper,” Transactions of the Metallurgical Society of AIME, Vol. 185, 1949, p. 186.
[12] H. Udin, Transactions of the Metallurgical Society of AIME, Vol. 189, 1951, p. 63.
[13] A. L. Pranatis and G. M. Pound, “Viscous Flow of Copper at High Temperatures,” Transactions of the Metallurgical Society of AIME, Vol. 203, 1955, p. 644
[14] V. Srivastava, K. R. McNee, H. Jones and G. W. Greenwood, “The Effect of Low Stresses on Creep and Surfaces Profiles of Thin Copper Wires,” Acta Materialia, Vol. 51, No. 15, 2003, pp. 4611-4619. doi:10.1016/S1359-6454(03)00298-2
[15] A. D. Schwope, K. F. Smith and L. R. Jackson, “The Comparative Creep Properties of Several Types of Commercial Coppers,” Transactions of the Metallurgical Society of AIME, Vol. 185, 1950, p. 409.
[16] A. Ayensu, G. K. Quainoo and S. K. Adjepong, “Grain Boundary Creep in Copper,” Journal of Materials Science Letters, Vol. 12, No. 13, 1993, pp. 1008-1010. doi:10.1007/BF00420200
[17] H. Conrad, “Effect of Grain Size on the Lower Yield and Flow Stress of Iron and Steel,” Acta Metallurgica, Vol. 11, 1963, pp. 75-77.
[18] M. E. Kasner, M. Teresa and P. Prado, “Fundamentals of Creep in Metals and Alloys,” Elsevier, Tokyo, 2004.
[19] J. Dvorak, V. Sklenicka, P. Kral, M. Svoboda and I. Saxl, “Characterization of Creep Behaviour and Microstructure Ganges in Pure Copper Processed by Equal-Channel Angular Dressing,” Reviews on Advanced Materials Science, Vol. 25, 2010, pp. 225-232.
[20] A. Akbari-Fakhrabadi, R. Mahmadi, A. Karsaz and A. R. Geranmayeh, “Creep Behavior of Copper and Cu-0.3Cr-0.1 Ag Alloy,” Journal of Engineering Materials and Technology, Vol. 132, No. 4, 2010, Article ID: 044501. doi:10.1115/1.4002356
[21] W. D. Jenkins and G. Digges, “Creep of High-Purity Copper,” Journal of Research of the National Institute of Standards and Technology, Vol. 45, No. 2, 1950.
[22] S. J. Zinkle and E. H. Lee, “Effect of Oxygen on Vacancy Cluster Morphology in Metals,” Metallurgical and Materials Transactions, Vol. 21, No. 5, 1990, pp. 1037-1051.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.