Development of a Simple Software Program Used for Evaluation of Plasma Electron Density in LIBS Experiments via Spectral Line Shape Analysis


A Software program has been developed in order to perform a fast and reliable calculation to plasma electron density in laser induced breakdown spectroscopy (LIBS) experiments. This program is based on analyzing the emitted spectral line shape via utilizing facilities of the MatLab7? package to perform this task. This software can perform the following tasks; read the exported data file (*txt-format) from ICCD camera-software, specify the working wavelength of interest, removes the continuum emission component appeared under the line, calculates the spectral line intensity of the line, calculates the spectral shift of the line from the tabulated values, correct against spectral shift jitter at the peak emission, de-convoluting and extracting the different components contributing to the emitted line full width at half of the maximum (FWHM) and finally calculates the plasma electron density. In this article we shall present the results of the test measurement of the plasma electron density utilizing spectral line shape analysis to the emitted Hα-line, Si I-line at 288.15 nm and O I-line at 777.2 nm at different camera delay times ranging from 1 to 5 μs.

Share and Cite:

A. Mohmoud El Sherbini and A. Aziz Saad Al Aamer, "Development of a Simple Software Program Used for Evaluation of Plasma Electron Density in LIBS Experiments via Spectral Line Shape Analysis," Journal of Signal and Information Processing, Vol. 3 No. 4, 2012, pp. 502-515. doi: 10.4236/jsip.2012.34063.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. F. M. Y. Haider and Z. H. Khan, “Determination of Ca Content of Coral Skeleton by Analyte Additive Method Using the LIBS Technique,” Optics & Laser Technology, Vol. 44, No. 6, 2012, pp. 1654-1659. doi:10.1016/j.optlastec.2012.01.032
[2] W. Lochte-Holtgreven, “Plasma Diagnostics,” North Holland, Amsterdam, 1968.
[3] H. R. Griem, “Plasma Spectroscopy,” McGrow-Hill, Inc., New York, 1964.
[4] H. R. Griem, “Spectral Line Broadening by Plasmas,” Academic Press, New York, 1974.
[5] H. J-Kunze, “Introduction to Plasma Spectroscopy,” Springer Series on Atomic, Optical and Plasma Physics, Vol. 56, Springer, New York, 2009.
[6] H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto and P. Matheron, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” JQSRT, Vol. 77, No. 4, 2003, pp. 365-372. doi:10.1016/S0022-4073(02)00163-2
[7] N. Konjevic, “Plasma Broadening and Shifting of Non-Hydrogenic Spectral Lines: Present Status and Applications,” Physics Reports, Vol. 316, No. 6, 1999, pp. 339-401. doi:10.1016/S0370-1573(98)00132-X
[8] R. Zikic, M. A. Gigosos, M. Ivkovic, M. A. Gonzalez and N. Konjevic, “A Program for the Evaluation of Electron Number Density from Experimental Hydrogen Balmer Beta Line Profiles,” Spectrochimica Acta Part B, Vol. 57, No. 5, 2002, pp. 987-998. doi:10.1016/S0584-8547(02)00015-0
[9] N. Konjevic, M. Ivkovic and N. Sakan, “Hydrogen Balmer Lines for Low Electron Number Density Plasma Diagnostics,” Spectrochimica Acta Part B, Vol. 76, 2012, pp. 16-26.
[10] C. Yubero, M. C. García and M. D. Calzada, “On the Use of the Hα Spectral Line to Determine the Electron Density in a Microwave (2.45 GHz) Plasma Torch at Atmospheric Pressure,” Spectrochimica Acta Part B, Vol. 61, No. 5, 2006, pp. 540-544. doi:10.1016/j.sab.2006.03.011
[11] W. Olchawa, “Computer Simulations of Hydrogen Spectral Line Shapes in Dense Plasmas,” JQSRT, Vol. 74, No. 4, 2002, pp. 417-429. doi:10.1016/S0022-4073(01)00262-X
[12] S.-K. Chan and A. Montaser, “Determination of Electron Number Density via Stark Broadening with an Improved Algorithm,” Spectrochimica Acta Part B, Vol. 448, No. 2, 1989, pp. 175-184.
[13] A. M. El Sherbini, H. Hegazy and Th. M. El Sherbini, “Measurement of electron density utilizing the Hα-Line from Laser Produced Plasma in Air,” Spectrochimica Acta Part B, Vol. 61, No. 5, 2006, pp. 532-539. doi:10.1016/j.sab.2006.03.014
[14] P. Kepple and H. R. Griem, “Improved Stark Profile Calculations for the Hydrogen Lines Hα, Hβ, Hγ, and Hδ,” Physical Review, Vol. 173, No. 1, 1968, pp. 317-325. doi:10.1103/PhysRev.173.317
[15] A. M. EL Sherbini, A. M. Aboulfotouh, S. H. Allam and Th. M. EL Sherbini, “Diode Laser Absorption Measurements at the Hα-Transition in Laser Induced Plasmas on Different Targets,” Spectrochimica Acta Part B, Vol. 65, No. 12, 2010, pp. 1041-1046. doi:10.1016/j.sab.2010.11.004
[16] A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti and E. Tognoni, “Evaluation of Self-Absorption Coefficients of Aluminum Emission Lines in Laser-Induced Breakdown Spectroscopy Measurements,” Spectrochimica Acta Part B, Vol. 60, No. 12, 2005, pp. 1573-1579. doi:10.1016/j.sab.2005.10.011

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.