Exploring the edge of a natural disaster


Natural geological, chronic and acute release of volcanic gases can have a dramatic impact on vegetative ecosystems and potential impact on regional agriculture and human health. This research incorporates a series of observations using leaf level gas exchange, chlorophyll fluorescence and remotely sensed reflectance measurements of vegetation experiencing chronic exposure to volcanic gas emissions; to develop techniques for monitoring the relative health of vegetation along the edge of an acute vegetative kill zone of a natural disaster and potential preeruption vegetation physiology. Experiments were conducted along an elevation gradient that corresponds to the SO2 gradient on vegetation along the south flank of Volcán Turrialba, Costa Rica. This study site is a natural environment with high volcanic degassing activity with significant SO2 emissions (n/d-0.281 ppm). Corresponding to an SO2 gradient, a substantial increase in CO2 concentration of (430-517 ppm) was identified. We further show the physiological interactions of SO2 and CO2 have on vegetation along the kill zone of this natural disaster can be assessed by examining the SO2/CO2 ratios. The physiological indices tested and relationships among measurements emphasized in this research will add to the assessment of the impact atmospheric volcanic gas emissions have on the physiology of surrounding vegetation as well as advance the capability of remotely sensed environmental stress in natural settings.

Share and Cite:

Jenkins, M. , Krofcheck, D. , Teasdale, R. , Houpis, J. and Pushnik, J. (2012) Exploring the edge of a natural disaster. Open Journal of Ecology, 2, 222-232. doi: 10.4236/oje.2012.24026.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] National Seismological Network. (2010) Turrialba volcano, costa rica current activity. Preliminary report, Red Sismolo’gica Nacional, 4-10 January 2010, pp. 1-6.
[2] Lanly, J.P. (1982) Tropical Forest Resources. FAO for- estry paper 30, United Nations Food and Agricultural Organization, Rome.
[3] Collins, N.M., Sayer, J.A. and Whitmore, T.C. (1991) The conservation atlas of tropical forests Asia and the Pacific. Simon and Schuster, New York.
[4] Food and Agricultural Organization (1993) Forest resources assessment 1990: Tropical countries. FAO Forestry Paper 112, United Nations Food and Agricultural Organization, Rome.
[5] Primack, R.B. and Lovejoy, T.E. (1995) Ecology, con- servation, and management of southeast Asian rainforests. Yale University Press, New Haven.
[6] Laurance, W.F. and Bierregaard, R.O. (1997) Tropical forest remnants: Ecology, management, and conservation of fragmented communities. University of Chicago Press, Chicago.
[7] Whitmore, T.C. (1997) Tropical forest disturbance, dis- appearance, and species loss. In: Laurance, W.F., Bierregaard, R.O., Eds., Tropical Forest Remnants: Ecology, Management, and Conservation of Fragmented Communities, University of Chicago Press, Chicago, 3-12.
[8] Laurance, W.F. (1998) A crisis in the making: Responses of Amazonian forests to land use and climate change. Trends in Ecology and Evolution, 13, 411-415.
[9] Brooks, T.M., Pimm, S.L. and Oyugi, J.O. (1999) Time lag between deforestation and bird extinction in tropical forest fragments. October, 13, 1140-1150.
[10] Laurance, W.F. (1999) Reflections on the tropical deforestation crisis. Biological Conservation, 91, 109-117. doi:10.1016/S0006-3207(99)00088-9
[11] Panicucci, A., Nali, C. and Lorenzini, G. (1998) Differential photosynthetic response of two mediteranian species (Arbutus unedo and Viburnum tinus) to sulphur dioxide. Chemosphere, 36, 703-708. doi:10.1016/S0045-6535(97)10111-4
[12] Gamon, J.A. and Surfus, J.S. (1999) Assessing leaf pigment content and activity with a reflectometer. New Phy- tologist, 143, 105-117. doi:10.1046/j.1469-8137.1999.00424.x
[13] Rasmuson, M. (2002) Fluctuating asymmetry-indicator of what. Hereditas, 136, 177-183. doi:10.1034/j.1601-5223.2002.1360301.x
[14] Omasa, K. and Takayama, K. (2002) Image instrumentation of chlorophyll a ?uorescence for diagnosing photosynthetic injury. In: Omasa, K., Saji, H., Yousse?an, S. and Kondo, N., Eds., Air Pollution and Plant Biotechnology, Springer-Verlag, Berlin, 287-308.
[15] Boyer, J.N., Houston, D.B. and Jensen, K. F. (1986) Impacts of chronic SO2, O3, and SO2 + O3 exposures on photosynthesis of Pinus strobes clones, European Journal of Plant Pathology, 16, 293-299. doi:10.1111/j.1439-0329.1986.tb00194.x
[16] Darrall, N.M. (1989) The effect of air pollutants on physiological processes in plants. Plant Cell and Environment, 12, 1-30. doi:10.1111/j.1365-3040.1989.tb01913.x
[17] De Kok, L.J. (1990) Sulphur metabolism in plants exposed to atmospheric sulphur, sulphur nutrition and sulphur nutrition assimilation in higher plants, fundamental, environmental and agricultural aspects. SPB Academic Publishing, Hague, 125-138.
[18] Mooser, F., Meyer-Abich, H. and McBirney, A.R. (1958) Catalogue of the active volcanoes of the world including solfatra fields. International Volcanological Association, Part VI Central America, 6, 144-145.
[19] Alvarado, G.E. and Soto, G.J. (2008) Volcanoes in the pre- Columbian life, legend, and archaeology of Costa Rica (Central America). Journal of Volcanology and Geothermal Research, 176, 356-362. doi:10.1016/j.jvolgeores.2008.01.032
[20] Palkovic, L. (1978) A hybrid of Gunnera from Costa Rica. Systematic Botany, 3, 226-235. doi:10.2307/2418316
[21] LI-COR Bioscience, Inc. (2004) Using the LI-6400 portable photosynthesis system, Lincoln, NE, LI-COR Bioscience, Inc.
[22] Black, V.J and Unsworth, M.H. (1980) Stomatal response to sulphur dioxide and vapour pressure deficit. Journal of Experimental Botany, 31, 667-677. doi:10.1093/jxb/31.2.667
[23] Dodd, I.C. and Doley D. (1998) Growth responses of cucumber seedlings to sulphur dioxide fumigation in a tropical environment. Environmental and Experimental Botany, 39, 41-47. doi:10.1016/S0098-8472(97)00034-8
[24] Barton, J.R., McLaughlin, S.B. and McConathy, R.K. (1980) The effects of SO2 on components of leaf resistance to gas exchange. Environmental Pollution Series A, Ecological and Biological, 21, 255-265. doi:10.1016/0143-1471(80)90129-4
[25] Karenlampi, L. and Houpis, J.L.J. (1986) Structural condition of mesophyll cells of Pinus-ponderosa-var-sco- pulorum after sulfur dioxide fumigation. Canadian Journal of Forest Research, 16,1381-1385. doi:10.1139/x86-246
[26] Dobrowski, S.Z., Pushnik, J.C., Zarco-Tejada, P.J. and Ustin, S. (2005) Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. Remote Sensing of Environment, 97, 403-414. doi:10.1016/j.rse.2005.05.006
[27] Cornic, G., Le Gouallec, J.L., Briantais, J.M. and Hodges, M. (1989) Effect of dehydration and high light on photo- synthesis of two C3 plants. Phaseolus vulgaris L. and Elastostema repens. Planta, 177, 84-90. doi:10.1007/BF00392157
[28] Renou, J.L., Gerbaud, A., Just, D. and Andre, M. (1990) Different substomatal and chloroplastic CO2 concentration in water-stressed wheat. Planta, 182, 415-419. doi:10.1007/BF02411393
[29] Noctor, G., Veljovic-Jovanovic, S., Driscoll, S., Novitskaya, L. and Foyer, C.H. (2002) Drought and oxidative load in the leaves of CO3 plants: A predominant role for photorespiration. Ann. Bot, 89, 841-850. doi:10.1093/aob/mcf096
[30] Ort, D.R. and Baker, N.B. (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis. Current Opinion in Plant Biology, 5, 193-198. doi:10.1016/S1369-5266(02)00259-5
[31] Zarco-Tejada, P.J., Pushnik, J.C., Dobrowski, S., and Ustin, S.L. (2003) Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and doublepeak red-edge effects. Remote Sensing of Environment, 84, 283-294. doi:10.1016/S0034-4257(02)00113-X
[32] Flexas, J., Escalona, J.M., Evain, S., Gulias, J., Moya, I., Osmond, C. B. and Medrano, H. (2002a) Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C-3 plants. Physiologia Plantarum, 114, 231-240. doi:10.1034/j.1399-3054.2002.1140209.x
[33] Flexas, J., Bota, J., Escalona, J. M., Sampol, B. and Medrano, H. (2002) Effects of drought on photosynthesis in grapevines under field conditions: An evaluation of stomatal and mesophyll limitations. Functional Plant Biology, 29, 461-471. doi:10.1071/PP01119
[34] Gamon, J.A. and Qiu, H. (1999) Ecological applications of remote sensing at multiple scales. In: Pugnaire, F.I. and Valladares, F., Eds., Handbook of Functional Plant Ecology. Marcel Dekker, Inc., New York, 805-846.
[35] Gitelson, A. and Merzlyak M.N. (1994) Spectral re- flectance changes associated with autmn senescence of aesculus hippocastanum L. and Acer platanoides L. leaves: Spectral features and relation to chlorophyll estimation. Journal of Plant Physiology, 143, 286-292. doi:10.1016/S0176-1617(11)81633-0
[36] Gamon, J.A., Field, C.B., Goulden, M.L., Griffin, K.L., Hartely, A.E., Pe?uelas, J. and Valentini, R. (1995) Relationship between NDVI, canopy structure and photosynthesis in three Californian vegetation types. Ecological Application, 5, 28-41. doi:10.2307/1942049
[37] Filella, I., Pe?uelas, J., Llorens, L. and Estiarte, M. (2004) Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sensing of Environment, 90, 308-318. doi:10.1016/j.rse.2004.01.010
[38] Ustin, S., Gitelson, A., Jacquemoud, S., Schaepman, M., Asner, G., Gamon, J. and Zarco-Tejada, P. (2009) Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sensing of Envi- ronment, 113, 567-577. doi:10.1016/j.rse.2008.10.019
[39] Horler, D.N.H., Barber, J. and Barringer, A.R. (1980) Effects of heavy metals on the absorbance and reflectance spectra of plants. International Journal of Remote Sensing, 1, 121-136.
[40] Horler, D.N.H., Dockray, M. and Barber, J. (1983) The red edge of plant leaf reflectance. International Journal of Remote Sensing, 4, 273-288. doi:10.1080/01431168308948546
[41] Rock, B.N., Hoshizaki, T. and Miller, J.R. (1988) Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline. Remote Sensing of Environment, 24, 109-127. doi:10.1016/0034-4257(88)90008-9
[42] Vogelmann, J.E., Rock, B.N. and Moss, D.M. (1993) Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 14, 1563-1575. doi:10.1080/01431169308953986
[43] Gates, D.M., Keegan, V.J., Schleter, C. and Weidner, V.R. (1965) Spectral properties of plants. Applied Optics, 4, 11- 20. doi:10.1364/AO.4.000011
[44] Ogawa & Co. (1998) NO, NO2, and SO2 sampling protocol using the Ogawa sampler, Ogawa & Co., Pompano Beach.
[45] Vaisala Oyj. (2008) User’s guide vaisala CARBOCAP hand-held carbon dioxide meter GM70, Helsinki, Finland, Vaisala Oyj, Helsinki.
[46] Bowes, G. (1993) Facing the inevitable: plants and increasing atmospheric CO2. Annual Review of Plant Physiology and Plant Molecular Biology, 44, 309-332. doi:10.1146/annurev.pp.44.060193.001521
[47] Verma, M. and Agrawal, M. (1996) Alleviation of injurious effects of SO2 on soybean by modifying NPK nutrients. Agriculture, Ecosystems & Environment, 57, 49-55. doi:10.1016/0167-8809(95)01000-9
[48] McKee, I.F., Eiblmeier, M. and Polle, A. (1997) Enhanced ozone tolerance in wheat grown at an elevated CO2 con- centration. New Phytologist, 137, 275-284. doi:10.1046/j.1469-8137.1997.00801.x
[49] Miller, J.E., Heagle, A.S. and Pursley, W.A. (1998) Influence on soybean response to CO2 enrichment: II. biomass and development. Crop Science, 38, 122-128. doi:10.2135/cropsci1998.0011183X003800010021x
[50] Steubing, L. and Fangmeier, A. (1987) SO2 sensitivity of plant communities in a beech forest. Environmental Pollution, 44, 297-306. doi:10.1016/0269-7491(87)90205-3
[51] Chavez, P.S. (1989) Jr. Radiometric calibration of landsat thematic mapper multispectral images. Photogrammetric Engineering & Remote Sensing, 55, 1285-1294.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.