Regional Boundary Observability with Constraints of the Gradient


The aim of this paper is to explore the concept of observability with constraints of the gradient for distributed parabolic system evolving in spatial domain Ω, and which the state gradient is to be observed only on a part of the boundary of the system evolution domain. It consists in the reconstruction of the initial state gradient which must be between two prescribed functions in a subregion Γ of Ω. Two necessary conditions are given. The first is formulated in terms of the subdifferential associated with a minimized functional, and the second uses the Lagrangian multiplier method. Nu-merical illustrations are given to show the efficiency of the second approach and lead to open questions.

Share and Cite:

H. Bourray, A. Boutoulout and M. Baddi, "Regional Boundary Observability with Constraints of the Gradient," Intelligent Control and Automation, Vol. 3 No. 4, 2012, pp. 319-328. doi: 10.4236/ica.2012.34037.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. F. Curtain and A. J. Pritchard, “Infinite Dimensional Linear Systems Theory,” Springer Lecture Notes in Control and Informations, Science, Springer, New York, 1978.
[2] R. F. Curtain and H. Zwart, “An Introduction to Infinite Dimensional Linear Systems Theory,” Texts in Applied Mathematics, Vol. 21, Springer, New York, 1995.
[3] A. El Jai and A. J. Pritchard, “Sensors and Actuators in the Analysis of Distributed Systems,” Wiley, New York, 1988.
[4] M. Amouroux, A. El Jai and E. Zerrik, “Regional Observability of Distributed Systems,” International Journal of Systems Science, Vol. 25, No. 2, 1994, pp. 301-313.
[5] A. El Jai, M. C. Simon and E. Zerrik, “Regional Observability and Sensor Structures,” International Journal of Sensors and Actuators, Vol. 39, No. 2, 1993, pp. 95102. doi:10.1016/0924-4247(93)80204-T
[6] E. Zerrik, L. Badraoui and A. El Jai, “Sensors and Regional Boundary State Reconstruction of Parabolic Systems,” Sensors and Actuators Journal, Vol. 75, 1999, pp. 102-117. doi:10.1016/S0924-4247(98)00293-3
[7] A. Boutoulout, H. Bourray and M. Baddi, “Constrained Observability for Parabolic Systems,” International Journal of Mathematical Analysis, Vol. 5, No. 35, 2011, pp. 1695-1710.
[8] A. Boutoulout, H. Bourray, M. Baddi and F. Z. El Alaoui, “Regional Boundary Observability with Constraints,” International Review of Automation Control, Vol. 4, No. 6, 2011, pp. 846-854.
[9] E. Zerrik and H. Bourray, “Gradient Observability for Diffusion Systems,” International Journal of Applied Mathematics and Computer Science, Vol. 13, No. 2, 2003, pp. 39-50.
[10] E. Zerrik and H. Bourray, “Flux Reconstruction: Sensors and Simulations,” Sensors and Actuators A, Vol. 109, 2003, pp. 34-46. doi:10.1016/S0924-4247(03)00358-3
[11] E. Zerrik, H. Bourray and A. El Jai, “Regional Flux Reconstruction for Parabolic Systems,” International Journal of Systems Science, Vol. 34, No. 12, 2003, pp. 641-650. doi:10.1080/00207720310001601028
[12] J. P. Aubin, “L’analyse Non Linéaire et ses Motivations Economiques,” Masson, 1984.
[13] M. Fortin and R. Glowinski, “Méthodes de Lagrangien Augmenté. Applications à la Résolution Numérique des Problèmes Aux Limites,” Dunod, 1982.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.