Shoot Biomass Assessments of the Marine Phanerogam Zostera marina for Two Methods of Data Gathering

Abstract

In order to compare to data gathering methods for shoot biomass assessments of Zostera marina, we compare two allometric models each one representing a data gathering method, one at leaf level and the other in aggregated form. The first allometric model presented leaf dry weight in terms of leaf length as . The second model is expressed as a several-variables version of the allometric Equation (1) dry weight of each leaf in a given shoot can be considered to be a random variable therefore shoot biomass ws can be represented in the form Both models presented similar determination coefficients values of 0.85 and 0.87 respectively. We found no significant differences between parameters α (p = 0.11) and β (p = 0.50) fitted for each model, showing that both equations conduced to the same result. Moreover, both fitted models presented high Concordance Correlation Coefficients of reproducibility () (0.92 and 0.91). We concluded that for shoot weight assessments if larger samples and faster data processing is required then should model of Equation (2) be used. On the other hand, we proposed model of Equation (1) if data at leaf level is required for other endeavors.

Share and Cite:

E. Solana-Arellano, H. Echavarría-Heras, V. Díaz-Castañeda and O. Flores-Uzeta, "Shoot Biomass Assessments of the Marine Phanerogam Zostera marina for Two Methods of Data Gathering," American Journal of Plant Sciences, Vol. 3 No. 11, 2012, pp. 1541-1545. doi: 10.4236/ajps.2012.311186.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] F. T. Short and C. A. Short, “The Seagrass Filter: Purification of Coastal Water,” In: V. S. Kennedy, Ed., The Estuary as a Filter, Academic Press, Orlando, 1984, pp. 395-413.
[2] G. W. Thayer, W. J. Kenworthy and M. S. Fonseca, “The Ecology of Eelgrass Meadows of the Atlantic Coast: A Community Profile,” US Fish and Wildlife Service Division of Biological Services, FWS/OBS-84/02, No. 147, 1984.
[3] L. G. Ward, W. M. Kemp and W. R. Boynton, “The Influence of Waves and Seagrass Communities on Suspended Particulates in an Estuarine Embayment,” Journal of Marine Geology, Vol. 59, No. 1-4, 1984, pp. 85-103. doi:10.1016/0025-3227(84)90089-6
[4] M. S. Fonseca and J. S. Fisher, “A Comparison of Canopy Friction and Sediment Movement between Four Species of Seagrass with Reference to Their Ecology and Restoration,” Marine Ecology Progress Series, Vol. 29, 1986, pp. 15-22. doi:10.3354/meps029015
[5] T. P. Williams, J. M. Bubb and J. N. Lester, “Metal Accumulation within Salt Marsh Environment: A Review,” Marine Pollution Bulletin, Vol. 28, No. 5, 1994, pp. 277- 290. doi:10.1016/0025-326X(94)90152-X
[6] K. L. Heck, K. W. Able, C. T. Roman and M. P. Fahay, “Composition, Abundance, Biomass and Production of Macrofauna in a New England Estuary: Comparison among Eelgrass Meadows and Other Nursery Habitats,” Estuaries, Vol. 18, No. 2, 1995, pp. 379-389. doi:10.2307/1352320
[7] S. P. Hamburg and P. S. Homann, “Utilization of Growth Parameters of Eelgrass, Zostera marina, for Productivity Estimates under Laboratory and in Situ Conditions,” Marine Biology, Vol. 93, No. 2, 1986, pp. 299-303. doi:10.1007/BF00508267
[8] E. Solana-Arellano, D. J. Brobon-Gonzalez and H. A. Echavarria-Heras, “A General Allometric Model for Blade Production in Zostera marina L.,” Bulletin of Southern California Academy of Sciences, Vol. 97, 1998, pp. 39-48.
[9] C. M. Duarte, “Temporal Biomass Variability and Production/Biomass Relationships of Seagrass Communities,” Marine Ecology Progress Series, Vol. 51, 1989, pp. 269-276. doi:10.3354/meps051269
[10] H. Echavarria-Heras, K. S. Lee, E. Solana-Arellano and E. Franco-Vizcaíno, “Formal Analysis and Evaluation of Allometric Methods for Estimating Above-Ground Biomass of Eelgrass,” Annals of Applied Biology, Vol. 159, No. 3, 2011, pp. 503-515. doi:10.1111/j.1744-7348.2011.00511.x
[11] E. Solana-Arellano, S. E. Ibarra-Obando and H. A. Echavarria-Heras, “Calibración de un Modelo Alométrico para Evaluar la Producción Foliar de Zostera marina L.,” Hidrobiológica, Vol. 1, 1991, pp. 41-44.
[12] K. Aioi, “Seasonal Change in the Standing Crop of Eelgrass Zostera marina L. in Odawa Bay, Central Japan,” Aquatic Botany, Vol. 8, 1980, pp. 343-354. doi:10.1016/0304-3770(80)90064-9
[13] K.-S. Lee, S. R. Park and J.-B. Kim, “Production Dynamics of the Eelgrass, Zostera marina in Two Bay Systems on the South Coast of the Korean Peninsula,” Marine Biology, Vol. 147, No. 5, 2005. pp. 1091-1108. doi:10.1007/s00227-005-0011-8
[14] W.-T. Li, J.-H. Kima, J.-I. Parka and K.-S. Lee, “Assessing Establishment Success of Zostera marina Transplants through Measurements of Shoot Morphology and Growth,” Estuarine, Coastal and Shelf Science, Vol. 88, No. 3. 2010, pp. 377-384. doi:10.1016/j.ecss.2010.04.017
[15] C. M. Duarte, “Allometric Scaling of Seagrass Form and Productivity,” Marine Ecology Progress Series, Vol. 77, 1991, pp. 289-300. doi:10.3354/meps077289
[16] M. E. Solana-Arellano, H. A. Echavarria-Heras and S. E. Ibarra-Obando, “Leaf Size Dynamics for Zostera marina L. in San Quintin Bay, Mexico: A Theoretical Study,” Estuarine Coastal and Shelf Sciences, Vol. 44, No. 3, 1997, pp. 351-359. doi:10.1006/ecss.1996.0115
[17] T. M. Greve and D. Krause-Jensen, “Predictive Modelling of Eelgrass (Zostera marina) Depth Limits,” Marine Biology, Vol. 146, No. 5, 2005, pp. 849-858. doi:10.1007/s00227-004-1498-0
[18] H. Echavarria-Heras, E. Solana-Arellano and E. Franco-Vizcaíno, “An Allometric Method for the Projection of Eelgrass Leaf Biomass Production Rates,” Mathematical Biosciences, Vol. 223, No. 1, 2010, pp. 58-65. doi:10.1016/j.mbs.2009.10.008
[19] M. E. Kentula and C. D. McIntire, “The Autoecology and Production Dynamics of Eelgrass (Zostera marina L.) in Netarts Bay, Oregon,” Estuaries, Vol. 9, No. 3, 1986, pp. 188-199. doi:10.2307/1352130
[20] H. Echavarria-Heras, E. Solana-Arellano, C. Leal-Ramirez and E. Franco-Vizcaíno, “The Length-Times-Width Proxy for Leaf área of Eelgrass: Criteria for Evaluating the Representativeness of Leaf-Width Measurements,” Aquatic Consertation: Marine and Freshwater Ecosystems, Vol. 21, No. 7, 2011, pp. 604-613. doi:10.1002/aqc.1219
[21] L. I.-K. Lin, “A Concordance Correlation Coefficient to Evaluate Reproducibility,” Biometrics, Vol. 45, No. 1, 1989, pp. 255-268. doi:10.2307/2532051
[22] H. Akaike, “An New Look at the Statistical Model Identification,” IEEE Transactions on Autimatic Control, Vol. 19, No. 6, 1974, pp. 716-723. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1100705&contentType=Journals+%26+Magazines&queryText%3DAn+New+Look+at+the+Statistical+Model+Identification
[23] K. J. Anderson-Teixeira, Van M. Savage, A. P. Allen and J. F. Gillooly, “Allometry and Metabolic Scaling in: Ecology,” Encyclopedia of Life Sciences (ELS), John Willey & Sons Ltd., Chichester, 2009. doi:10.1002/978047001592.a0021222.
[24] L. A. Harris, C. M. Duarte and S. W. Nixon, “Allometric Laws and Prediction in Estuarine and Coastal Ecology,” Estuaries and Coasts, Vol. 29, No. 2, 2006, pp. 340-344. doi:10.1007/BF02782002

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.