Biomechanical prediction of abdominal aortic aneurysm rupture risk: Sensitivity analysis


Objectives: The purpose of this research is to determine the quantitative relationship between the peak wall stress of abdominal aortic aneurysm (AAA) and its clinical risk factors including its maximum diameter, asymmetry index, wall thickness and abnormal high blood pressure. Methods: The response surface experimental design with one response and four variables was used to design the experimental tests. Thirty experiments were performed through finite element analysis in order to obtain the designed response values. Results: A nonlinear multivariable regression function was developed based on the experimental data. Results demonstrated the inefficiency of traditional 5-cm criterion for estimating the rupture of AAA. The profound effect of wall thickness on the peak wall stress has been observed and validated by the existing publications. Conclusion: The conventional 5-cm criterion for estimating AAA rupture might induce biased prediction, and multiple clinical risk factors need to be considered in realistic clinical settings.

Share and Cite:

Zhao, S. , Li, W. and Gu, L. (2012) Biomechanical prediction of abdominal aortic aneurysm rupture risk: Sensitivity analysis. Journal of Biomedical Science and Engineering, 5, 664-671. doi: 10.4236/jbise.2012.511083.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Patel, M.I., Hardman, D.T., Fisher, C.M. and Appleberg, M. (1995) Current views on the pathogenesis of abdominal aortic aneurysms. Journal of the American College Surgeons, 181, 371-382.
[2] Vorp, D.A. and Vande Geest, J.P. (2005) Biomechanical determinants of abdominal aortic aneurysm rupture. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 1558-1566. doi:10.1161/01.ATV.0000174129.77391.55
[3] Darling, R.C., Messina, C.R., Brewster, D.C. and Ottinger, L.W. (1977) Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation, 56, 161-164.
[4] Hall, A.J., Busse, E.F., McCarville, D.J. and Burgess, J.J. (2000) Aortic wall tension as a predictive factor for abdominal aortic aneurysm rupture: Improving the selection of patients for abdominal aortic aneurysm repair. Annals of Vascular Surgery, 14, 152-157. doi:10.1007/s100169910027
[5] Doyle, B.J., Callanan, A., Burke, P.E., Grace, P.A., Walsh, M.T., Vorp, D.A. and McGloughlin, T.M. (2009) Vessel asymmetry as an additional diagnostic tool in the assessment of abdominal aortic aneurysms. Journal of Vascular Surgery, 49, 443-454. doi:10.1016/j.jvs.2008.08.064
[6] Truijers, M., Pol, J.A., Schultzekool, L.J., Van Sterkenburg, S.M., Fillinger, M.F. and Blankensteijn, J.D. (2007) Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms. European Journal of Vascular & Endovascular Surgery, 33, 401-407. doi:10.1016/j.ejvs.2006.10.009
[7] Kleinstreuer, C. and Li, Z. (2006) Analysis and computer program for rupture-risk prediction of abdominal aortic aneurysms. Biomedical Engineering Online, 5, 19. doi:10.1186/1475-925X-5-19
[8] Vorp, D.A., Raghavan, M.L. and Webster, M.W. (1998) Mechanical wall stress in abdominal aortic aneurysm: Influence of diameter and asymmetry. Journal of Vascular Surgery, 27, 632-639. doi:10.1016/S0741-5214(98)70227-7
[9] Adolph, R., Vorp, D.A., Steed, D.L., Webster, M.W., Kameneva, M.V. and Watkins, S.C. (1997) Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. Journal of Vascular Surgery, 25, 916-926. doi:10.1016/S0741-5214(97)70223-4
[10] Raghavan, M.L., Kratzberg, J., Castro de Tolosa, E.M., Hanaoka, M.M., Walker, P. and Da Silva, E.S. (2006) Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. Journal of Biomechanics, 39, 3010-3016. doi:10.1016/j.jbiomech.2005.10.021
[11] Vorp, D.A. (2007) Biomechanics of abdominal aortic aneurysm. Journal of Biomechanics, 40, 1887-1902. doi:10.1016/j.jbiomech.2006.09.003
[12] Rodriguez, J.F., Ruiz, C., Doblare, M. and Holzapfel, G.A. (2008) Mechanical stresses in abdominal aortic aneurysms: Influence of diameter, asymmetry, and material anisotropy. Journal of Biomechanical Engineering, 130, 021023-021032. doi:10.1115/1.2898830
[13] Helderman, F., Manoch, I.J., Breeuwer, M., Kose, U., Boersma, H., Van Sambeek, M.R.H.M., Pattynama, P.M.T., Schouten, O., Poldermans, D., Wisselink, W., Van der Steen, A.F. and Krams, R. (2010) Predicting patient-specific expansion of abdominal aortic aneurysms. European Journal of Vascular & Endovascular Surgery, 40, 47-53. doi:10.1016/j.ejvs.2010.02.017
[14] Raghavan, M.L., Kratzberg, J. and Da Silva, E.S. (2004) Heterogeneous, variable wall-thickness modeling of a ruptured abdominal aortic aneurysm. Proceedings of the ASME International Mechanical Engineering Conference, 13-19 November 2004, Anaheim, 271-272.
[15] Port, S., Demer, L., Jennrich, R., Walter, D. and Garfinkel, A. (2000) Systolic blood pressure and mortality. Lancet, 355, 175-180. doi:10.1016/S0140-6736(99)07051-8
[16] Dean, A. and Voss, D. (1999) Design and analysis of experiments. Springer, New York. doi:10.1007/b97673
[17] Lee, B.-H., Hong, J.-P. and Lee, J.-H. (2012) Optimum design criteria for maximum torque and efficiency of a line-start permanent-magnet motor using response surface methodology and finite element method,” IEEE Transactions on Magnetics, 48, 863-866.
[18] Xiong, J., Wang, S.M., Zhou, W. and Wu, J.G. (2008) Measurement and analysis of ultimate mechanical properties, stress-strain curve fit, and elastic modulus formula of human abdominal aortic aneurysm and nonaneurysmal abdominal aorta. Journal of Vascular Surgery, 48, 189-195. doi:10.1016/j.jvs.2007.12.053
[19] Vaikousi, H. and Biliaderis, C.G. (2005) Processing and formulation effects on rheological behavior of barley beta-glucan aqueous dispersions. Food Chemistry, 91, 505-516. doi:10.1016/j.foodchem.2004.04.042
[20] Montgomery, D.C. (2003) Design and analysis of experiments. John Wiley & Sons, Singapore.
[21] Xiong, J., Guo, W., Wang, J. and Zhou, W. (2009) Effects of Wall Thickness on Stress Distribution in Patient-Specific Models of Abdominal Aortic Aneurysm. Proceedings of the 2nd International Conference on Biomedical Engineering and Informatics, 17-19 October 2009, Tianjin, 1-3.
[22] Hasan, S.H., Srivastava, P., Ranjan, D. and Talat, M. (2009) Biosorption of Cr(VI) from aqueous solution using A. hydrophila in up-flow column: Optimization of process variables. Applied Microbiology and Biotechnology, 83, 567-577. doi:10.1007/s00253-009-1984-x
[23] Georgakarakos, E., Ioannou, C.V., Papaharilaou, Y., Kostas, T. and Katsamouris, A.N. (2011) Computational evaluation of aortic aneurysm rupture risk: What have we learned so far? Journal of Endovascular Therapy, 18, 214-225. doi:10.1583/10-3244.1
[24] Raghavan, M.L., Hanaoka, M.M., Kratzberg, J.A., De Lourdes Higuchi, M. and Da Silva, E.S. (2011) Biome-chanical failure properties and microstructural content of ruptured and unruptured abdominal aortic aneurysms. Journal of Biomechanics, 44, 2501-2507. doi:10.1016/j.jbiomech.2011.06.004
[25] Papaharilaou, Y., Ekaterinaris, J.A., Manousaki, E. and Katsamouris, A.N. (2007) A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms. Journal of Biomechanics, 40, 367-377. doi:10.1016/j.jbiomech.2005.12.013
[26] Georgakarakos, E., Ioannou, C.V., Kamarianakis, Y., Papaharilaou, Y., Kostas, T., Manousaki, E. and Katsamouris, A.N. (2010) The role of geometric parameters in the prediction of abdominal aortic aneurysm wall stress. European Journal of Vascular & Endovascular Surgery, 39, 42-48. doi:10.1016/j.ejvs.2009.09.026
[27] Scotti, C.M., Shkolnik, A.D., Muluk, S.C. and Finol, E.A. (2005) Fluid-structure interaction in abdominal aortic aneurysms: Effects of asymmetry and wall thickness. Bio-medical Engineering Online, 4, 64. doi:10.1186/1475-925X-4-64
[28] Xenos, M., Rambhia, S.H., Alemu, Y., Einav, S., Labropoulos, N., Tassiopoulos, A., Ricotta, J.J. and Bluestein, D. (2010) Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling. Annals of Biomedical Engineering, 38, 3323-3337. doi:10.1007/s10439-010-0094-3

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.