Share This Article:

Theoretical Simulation of the Infrared Absorption Spectrum of the Strong Hydrogen and Deuterium Bond in 2-Pyridone Dimer

Abstract Full-Text HTML Download Download as PDF (Size:601KB) PP. 228-239
DOI: 10.4236/ojpc.2012.24031    3,933 Downloads   7,796 Views   Citations

ABSTRACT

This work presents a theoretical simulation of the infrared spectra of strong hydrogen bond in alpha-phase 2-pyridone dimers, as well as in their deuterium derivatives at room temperature. The theory takes into account an adiabatic anharmonic coupling between the high-frequency N-H(D) stretching and the low-frequency intermolecular N...O stretching modes by considering that the effective angular frequency of the fast mode N-H(D) is assumed to be strongly dependent on the slow mode stretching coordinate N...O, the intrinsic anharmonicity of the low-frequency N...O mode through a Morse potential, Davydov coupling triggered by resonance exchange between the excited states of the fast modes of the two hydrogen bonds involved in the cyclic dimer, multiple Fermi resonances between the N-H(D) stretching and the overtone of the N-H(D) bending vibrations and the direct and indirect damping of the fast stretching modes of the hydrogen bonds and of the bending modes. The IR spectral density is computed within the linear response theory by Fourier transform of the autocorrelation function of the transition dipole moment operator of the N-H(D) bond. The theoretical line shapes of the υN-H(D) band of alpha-phase 2-pyridone dimers are compared to the experimental ones. The effect of deuteration is successfully reproduced.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

N. Issaoui, H. Ghalla and B. Oujia, "Theoretical Simulation of the Infrared Absorption Spectrum of the Strong Hydrogen and Deuterium Bond in 2-Pyridone Dimer," Open Journal of Physical Chemistry, Vol. 2 No. 4, 2012, pp. 228-239. doi: 10.4236/ojpc.2012.24031.

References

[1] G. C. Pimentel and A. L. McClellan, “The Hydrogen Bond,” W. H. Freeman, San Francisco, 1960.
[2] P. Schuster, G. Zundel and C. Sandorfy, “The Hydrogen Bond: Recent Developments in the Theory and Experiment, Parts I, II and III,” Elsevier, Amsterdam, 1976.
[3] Y. Marechal, “The Hydrogen Bond and the Water Molecule,” Elsevier, Amsterdam, Oxford, 2006.
[4] H. D. Arman, P. Poplaukhin and E. R. T. Tiekinkc, “2-Pyridone: Monoclinic Polymorph,” Acta Crystallographica Section E: Structure Reports Online, Vol. 65, No. 12, 2009, p. 3187. doi:10.1107/S1600536809049496
[5] M. T. Boisdon, S. Castillo, J. F. Brazier, J. Favrot and C. J. Marsden, “2(1H)-Pyridinone(2-Pyridone): Self-Association and Association with Water Spectral and Structural Characteristics: Infrared Study and Ab Initio Calculations,” Spectrochimica Acta Part A, Vol. 59, No. 14, 2003, pp. 3363-3377. doi:10.1016/S1386-1425(03)00162-8
[6] M. T. Boisdon, S. Castillo, J. F. Brazier and J. Favrot, “Vibrational Study of 2(1H)-Pyridinone(2-pyridone) in H2O and 1-D-2(1H)-Pyridinone(2-pyridone ND) in D2O,” Spectrochimica Acta Part A, Vol. 55, No. 7-8, 1999, pp. 1379-1388. doi:10.1016/S1386-1425(98)00301-1
[7] H. Ratajczak and W. J. Orville-Thomas, “Molecular Interactions,” John Wiley & Sons Inc., New York, 1980.
[8] G. R. Desiraju and T. Steiner, “The Weak Hydrogen Bond in Structural Chemistry and Biology,” Oxford University Press, Oxford, 1999.
[9] M. Gallant, M. T. P. Viet and J. D. Wuest, “Hydrogen-Bonded Dimers. Direct Study of the Interconversion of Pyridone Dimers and Hydroxypyridine Monomers by Low-Temperature Nuclear Magnetic Resonance Spectroscopy,” Journal of the American Chemical Society, Vol. 113, No. 2, 1991, pp. 721-723. doi:10.1021/ja00002a077
[10] C. Fuke, T. Arao, Y. Morinaga, H. Takaesu, K. Ameno and T. Miyazaki, “Analysis of Paraquat, Diquat and Two Diquat Metabolites in Biological Materials by High-Performance Liquid Chromatography,” Legal Medicine, Vol. 4, No. 3, 2002, pp. 156-163. doi:10.1016/S1344-6223(02)00011-1
[11] M. El-Kemary, J. A. Organero and A. Douhal, “Assessment of Solvent Effect on the Relaxation Dynamics of Milrinone, ” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 187, No. 2-3, 2007, pp. 339-347. doi:10.1016/j.jphotochem.2006.10.032
[12] Y. Ducharme and J. D. Wuest, “Use of Hydrogen Bonds to Control Molecular Aggregation. Extensive, Self-Complementary Arrays of Donors and Acceptors,” Journal of Organic Chemistry, Vol. 53, No. 24, 1988, pp. 5787-5789. doi:10.1021/jo00259a037
[13] M. Gallant, M. T. P. Viet and J. D. Wuest, “Use of Hydrogen Bonds to Control Molecular Aggregation. Association of Dipyridones Joined by Flexible Spacers,” Journal of Organic Chemistry, Vol. 56, No. 7, 1991 pp. 2284-2286. doi:10.1021/jo00007a007
[14] M. J. Wójcik, W. Tatara, M. Boczar, A. Apola and S. Ikeda, “Spectroscopic and Theoretical Study of Vibrational Spectra of Hydrogen-Bonded 2-Pyridone,” Journal of Molecular Structure, Vol. 596, No. 1-3, 2001, pp. 207-214. doi:10.1016/S0022-2860(01)00719-0
[15] M. J. Wójcik, “Theoretical Modeling of Vibrational Spectra and Multidimensional Proton Tunneling in Hydrogen-Bonded Systems,” Journal of Molecular Liquids, Vol. 141, No. 1-2, 2008, pp. 39-46. doi:10.1016/j.molliq.2008.03.002
[16] M. J. Wójcik, “Theory of the Infrared Spectra of the Hydrogen Bond in Molecular Crystals,” International Journal of Quantum Chemistry, Vol. 10, No. 5, 1976, pp. 747-760. doi:10.1002/qua.560100506
[17] A. Witkowski and M. J. Wójcik, “Infrared Spectra of Hydrogen Bond a General Theoretical Model,” Chemical Physics, Vol. 1, No. 1, 1973, pp. 9-16. doi:10.1016/0301-0104(73)87017-X
[18] M. J. Wójcik, “Fermi Resonance in Dimers: A Model Study,” Molecular Physics, Vol. 36, No. 6, 1978, pp. 1757-1767. doi:10.1080/00268977800102741
[19] P. M. Morse, “Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels,” Physics Reviews, Vol. 34, No. 1, 1929, pp. 57-64. doi:10.1103/PhysRev.34.57
[20] N. Issaoui, N. Rekik, B. Oujia and M. J. Wójcik, “Theoretical Infrared Line Shapes of H-Bonds within the Strong Anharmonic Coupling Theory and Fermi Resonances Effects,” International Journal of Quantum Chemistry, Vol. 110, No. 14, 2010, pp. 2583-2602. doi:10.1002/qua.22395
[21] Y. Maréchal and A. Witkowski, “Infrared Spectra of H-Bonded Systems,” Journal of Chemical Physics, Vol. 48, No. 8, 1968, pp. 3697-3704. doi:10.1063/1.1669673
[22] N. R?sh and M. Ratner, “Model for the Effects of a Condensed Phase on the Infrared Spectra of Hydrogen-Bonded Systems,” Journal of Chemical Physics, Vol. 61, No. 8, 1974, pp. 3344-3351. doi:10.1063/1.1682497
[23] B. Boulil, O. H. Rousseau and P. Blaise, “Infrared Spectra of Hydrogen Bonded Species in Solution,” Chemical Physics, Vol. 126, No. 2-3, 1988, pp. 263-290. doi:10.1016/0301-0104(88)85038-9
[24] H. T. Flakus, A. Tyl and A. Ma?lankiewicz, “Electron-Induced Phase Transition in Hydrogen-Bonded Solid-State 2-Pyridone,” Journal of Physical Chemistry A, Vol. 115, No. 6, 2011, pp. 1027-1039. doi:10.1021/jp108717v
[25] P. Blaise, M. J. Wójcik and O. H. Rousseau, “Theoretical Interpretation of the Line shape of the Gaseous Acetic Acid Dimer,” Journal of Chemical Physics, Vol. 122, No. 6, 2005, pp. 64306-64317. doi:10.1063/1.1847491
[26] M. J. Frisch, “Gaussian 03, Revision B.03,” Gaussian, Inc., Pittsburgh, 2003.
[27] R. Kubo, “Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems,” Journal of Physics Society Japan, Vol. 12, No. 6, 1957, pp. 570-586. doi:10.1143/JPSJ.12.570
[28] R. Kubo, “Lectures in Theoretical Physics I,” In: W. E. Brittin and L. G. DUnham, Eds., Interscience, 1st Annual Summer Institute for Theoretical Physics, Colorado, 16 June-22 August 1958, pp. 120-203.
[29] M. El-A. Benmalti, D. Chamma, P. Blaise and O. H. Rousseau, “Theoretical Interpretation of the Infrared Lineshape of Gaseous Propynoic and Acrylic Acid Dimers,” Journal of Molecular Structure, Vol. 785, No. 1-3, 2006, pp. 27-31. doi:10.1016/j.molstruc.2005.09.036
[30] K. Heyne, N. Huse, J. Dreyer, E. T. J. Nibbering, T. Elsaesser and S. Mukamel, “Coherent Low-Frequency Motions of Hydrogen Bonded Acetic Acid Dimers in the Liquid Phase,” Journal of Chemical Physics, Vol. 121, No. 2, 2004, pp. 902-913. doi:10.1063/1.1762873
[31] Z. Mielke and L. Sobczyk, “Vibrational Isotope Effects in Hydrogen Bonds,” In: A. Kohen and H.-H. Limbach, Eds., Isotope Effects in Chemistry and Biology, CRC Press, Taylor and Francis Group, West Palm Beach, London, 2006, pp. 281-304.
[32] N. Issaoui, N. Rekik, B. Oujia and M. J. Wójcik, “Anharmonic Effects on Theoretical IR Line Shapes of Medium Strong H(D)Bonds,” International Journal of Quantum Chemistry, Vol. 109, No. 3, 2009, pp. 483-499. doi:10.1002/qua.21839
[33] A. Novak, “Hydrogen Bonding in Solids Correlation of Spectroscopic and Crystallographic Data,” Structure and bonding, Vol. 18, 1974, pp. 177-216.
[34] I. Olovsson and P. G. J?nsson, “Hydrogen Bond,” In: P. Scheuster, G. Zundel and C. Sandorfy, Eds., Elsevier, Amsterdam, 1976, pp. 393-456.
[35] N. Rekik, B. Oujia and M. J. Wójcik, “Theoretical Infrared Spectral Density of H-bonds in Liquid and Gas Phases: Anharmonicities and Dampings Effect,” Chemical Physic, Vol. 352, No. 1-3, 2008, pp. 65-76. doi:10.1016/j.chemphys.2008.05.009
[36] S. E. Odinokov and A. V. Iogansen, “Torsional γ(OH) Vibrations, Fermi Resonance [2γ(OH) ν(OH)] and Isotopic Effects in i.r. Spectra of H-Complexes of Carboxylic Acids with Strong Bases,” Spectrochimica Acta Part A: Molecular Spectroscopy, Vol. 28, No. 12, 1972, pp. 2343-2350. doi:10.1016/0584-8539(72)80214-9
[37] P. Blaise, M. J. Wójcik and O. H. Rousseau, “Theoretical Interpretation of the Line Shape of the Gaseous Acetic Acid Cyclic Dimer,” Journal of Chemical Physics, Vol. 122, No. 6, 2005, pp. 64-306. doi:10.1063/1.1847491
[38] M. El-A. Benmalti, P. Blaise, H. T. Flakus and O. H. Rousseau, “Theoretical Interpretation of the Infrared Line Shape of Liquid and Gaseous Acetic Acid,” Chemical Physics, Vol. 320, No. 2-3, 2006, pp. 267-274. doi:10.1016/j.chemphys.2005.07.032
[39] J. L. Leviel and Y. Marechal, “Infrared Spectra of H-Bonded Systems: Anharmonicity oh the H-Bond Vibrations in Cyclic Dimers,” The Journal of Chemical Physics, Vol. 54 No. 3, 1971, pp. 1104-1107. doi:10.1063/1.1674943
[40] D. Hadzi, “Infrared Spectra of Strongly Hydrogen-Bonded Systems,” Pure and Applied Chemistry, Vol. 11, No. 3, 1965, pp. 435-454. doi:10.1351/pac196511030435
[41] J. Emsley, “Very Strong Hydrogen Bonding,” Chemical Society Reviews, Vol. 9, No. 1, 1980, pp. 91-124. doi:10.1039/cs9800900091
[42] W. H. Louisell and L. R. Walker, “Density-Operator Theory of Harmonic Oscillator Relaxation,” Physical Review, Vol. 137, No. 1B, 1965, pp. B204-B211. doi:10.1103/PhysRev.137.B204
[43] R. Feynmann and F. Vernon, “The Theory of a General Quantum System Interacting with a Linear Dissipative System,” Annals of Physics, Vol. 24, 1963, pp.118-173. doi:10.1016/0003-4916(63)90068-X
[44] W. H. Louisell, “Quantum Statistical Properties of Radiations,” Wiley, New York, 1973.
[45] K. Belhayara, D. Chamma, A. Velcescu and O. H. Rousseau, “On the Similarity of the IR Lineshapes of Weak H-Bonds in the Gas and Liquid Phases: Quantum Combined Effects of Strong an Harmonic Coupling, Multiple Fermi Resonances, Weak Dampings and Rotational Structure,” Journal of Molecular Structure, Vol. 833, No. 1-3, 2007, pp. 65-73. doi:10.1016/j.molstruc.2006.09.001
[46] L. C. Thomas, R. A. Chittenden and H. E. Hartley, “Hydrogen Bonding in Alkyl Phosphonic and Alkyl Phosphonothionic Acids,” Nature, Vol. 192, 1961, pp. 1283-1284. doi:10.1038/1921283a0
[47] K. G. Tokhadze, G. S. Denisov, M. Wierzejewska and M. Drozd, “First Example of the ABC ν(OH) Absorption Structure for Both Gaseous and Crystalline Phase: Infrared Studies of Dimethylphosphinic Acid,” Journal of Molecular Structure, Vol. 404, No. 1-2, 1997, pp. 55-62. doi:10.1016/S0022-2860(96)09360-X
[48] R. E Asfin, G. S. Denisov and K. G. Tokhadze, “The Infrared Spectra and Enthalpies of Strongly Bound Dimers of Phosphinic Acids in the Gas Phase. (CH2Cl)2 POOH and (C6H5)2 POOH,” Journal of Molecular Structure, Vol. 608, No. 2-3, 2002, pp. 161-168. doi:10.1016/S0022-2860(01)00925-5
[49] H. T. Flakus, “On the Vibrational Transition Selection Rules for the Centrosymmetric Hydrogen-Bonded Dimeric Systems,” Journal of Molecular Structure: Theochem, Vol. 187, 1989, pp. 35-53.
[50] H. T. Flakus and A. Miros, “Infrared Spectra of the Hydrogen Bonded Glutaric Acid Crystals: Polarization and Temperature Effects,” Journal of Molecular Structure, Vol. 484, No. 1-3, 1999, pp. 103-115.
[51] H. T. Flakus and M. Jabonska, “Study of Hydrogen Bond Polarized IR Spectra of Cinnamic Acid Crystals,” Journal of Molecular Structure, Vol. 707, No. 1-3, 2004, pp. 97-108.
[52] D. Chamma and O. H. Rousseau, “Infrared Spectra of weak H-Bonds: Beyond an Adiabatic Description of Fermi Resonances,” Chemical Physics, Vol. 248, No. 1, 1999, pp. 91-104.
[53] N. Issaoui, H. Ghalla and B. Oujia, “Theoretical Study of Hydrogen and Deuterium Bond in Glutaric Acid Crystal Dimer,” International Journal of Quantum Chemistry, Vol. 112, No. 4, 2012, pp.1006-1015.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.