Diagnostic Strategies and Treatment for Ewing’s Sarcoma


Ewing’s sarcoma is an enigmatic malignancy of progenitor cell origin, driven by transcription factor oncogenic fusions. About 85% of ESFT cases harbor the t(11;22) translocation and express the fusion protein EWS-FLI. Both bone marrow-derived human Mesenchymal stem cells and Neural crest stem cells are permissive for EWS-FLI1 expression that initiates transition to ESFT-like cellular phenotype. Diagnosis of Ewing’s tumor is based on pathologic and molecular findings. The hypoxia enhances the malignancy of ESFT invasive capacity. An ALDHhigh subpopulation of Ewing’s sarcoma cells, capable of self-renewal, tumor initiation and resistant to chemotherapy in vitro, are not resistant to YK-4-279. Intensive high-dose chemotherapy followed by stem-cell reconstitution was used for ESFT patients in second remission. Plerixafor in combination with G-CSF is an effective enhance stem cell mobilization regimen for stem cell collection with lowest success rate in patients with neuroblastoma. The ESFT-derived antigens EZH2(666) and CHM1(319) are suitable targets for protective allo-restricted human CD8(+) T-cell responses against non-immunogenic ESFT. Primitive neuroectodermal features and MSC origin are both compatible with G(D2) aberrant expression and explore G(D2) immune targeting in ESFT.

Share and Cite:

R. Todorova and A. Atanasov, "Diagnostic Strategies and Treatment for Ewing’s Sarcoma," International Journal of Clinical Medicine, Vol. 3 No. 6, 2012, pp. 538-543. doi: 10.4236/ijcm.2012.36097.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. Todorova, “In Vitro Interaction between the N-Terminus of the Ewing’s Sarcoma Protein and the Subunit of RNA Polymerase II hsRPB7,” Molecular Biology Reports, Vol. 36, No. 6, 2009, pp. 1269-1274. doi:10.1007/s11033-008-9308-2
[2] A. Cooper, J. van Doorninck, L. Ji, D. Russell, M. Ladanyi, H. Shimada, M. Krailo, R. B. Womer, J. H. Hsu, D. Thomas, T. J. Triche, R. Sposto and E. R. Lawlor, “Ewing Tumors That Do Not Overexpress BMI-1 Are a Distinct Molecular Subclass with Variant Biology: A Report from the Children’s Oncology Group,” Clinical Cancer Research, Vol. 17, No. 1, 2011, pp. 56-66. doi:10.1158/1078-0432.CCR-10-1417
[3] J. Gonin, F. Larousserie, B. Dousset, J. Rousseau, O. Delattre, C. Waintrop, V. Tsatsaris, J. Y. Pierga, M. C. Vacher-Lavenu and F. Tissier, “An Unusual Adrenal Tumor: Ewing Tumor,” Annals of Pathology, Vol. 31, No. 1, 2011, pp. 28-31. doi:10.1016/j.annpat.2010.07.043
[4] O. Awad, J. T. Yustein, P. Shah, N. Gul, V. Katuri, A. O’Neill, Y. Kong, M. L. Brown, J. A. Toretsky and D. M. Loeb, “High ALDH Activity Identifies Chemotherapy-Resistant Ewing’s Sarcoma Stem Cells That Retain Sensitivity to EWS-FLI1 Inhibition,” PLoS One, Vol. 5, No. 11, 2010, p. e13943. doi:10.1371/journal.pone.0013943
[5] R. Esser, W. Glienke, K. Bochennek, S. Erben, A. Quaiser, C. Pieper, A. Eggert, A. Schramm, K. Astrahantseff, M. L. Hansmann, D. Schwabe, T. Klingebiel and U. Koehl, “Detection of Neuroblastoma Cells during Clinical Follow Up: Advanced Flow Cytometry and rt-PCR for Tyrosine Hydroxylase Using Both Conventional and Real-Time PCR,” Klinical Padiatrics, Vol. 223, No. 6, 2011, pp. 326-331. doi:10.1055/s-0031-1287842
[6] B. Sadikovic, C. Graham, M. Ho, M. Zielenska and G. R. Somers, “Immunohistochemical Expression and Cluster Analysis of Mesenchymal and Neural Stem Cell-Associated Proteins in Pediatric Soft Tissue Sarcomas,” Pediatric and Development Pathology, Vol. 14, No. 4, 2011, pp. 259-272. doi:10.2350/10-08-0890-OA.1
[7] S. Kailayangiri, B. Altvater, J. Meltzer, S. Pscherer, A. Luecke, C. Dierkes , U. Titze, K. Leuchte, S. Landmeier, M. Hotfilder, U. Dirksen, J. Hardes, G. Gosheger, H. Juergens and C. Rossig, “The Ganglioside Antigen GD2 Is Surface-Expressed in Ewing Sarcoma and Allows for MHC-Independent Immune Targeting,” British Journal of Cancer, Vol. 106, No. 6, 2012, pp. 1123-1133. doi:10.1038/bjc.2012.57
[8] W. Zeng, R. Wan, Y. Zheng, S. R. Singh and Y. Wei, “Hypoxia, Stem Cells and Bone Tumor,” Cancer Letters, Vol. 313, No. 2, 2011, pp. 129-136. doi:10.1016/j.canlet.2011.09.023
[9] C. De Vito, N, Riggi, M.-L. Suvà, M. Janiszewska, J. Horlbeck, K. Baumer, P. Provero and I. Stamenkovic, “Let-7a Is a Direct EWS-FLI-1 Target Implicated in Ewing’s Sarcoma Development,” PLoS One, Vol. 6, No. 8, 2011, p. e23592. doi:10.1371/journal.pone.0023592
[10] H. V. Erkizan, Y. Kong, M. Merchant, S. Schlottmann, J. S. Barber-Rotenberg, L. Yuan, O. D. Abaan, T. H. Chou, S. Dakshanamurthy, M. L. Brown, A. Uren and J. A. Toretsky, “A Small Molecule Blocking Oncogenic Protein EWS-FLI1 Interaction with RNA Helicase A Inhibits Growth of Ewing’s Sarcoma,” Nature Medicine, Vol. 15, No. 7, 2009, pp. 750-756. doi:10.1038/nm.1983
[11] D. Loeb, “Identification and Characterization of the Ewing’s Sarcoma Stem Cell. An ESUN Study Report,” Liddy Shriver Sarcoma Initiative, 2009.
[12] J. Rosenthal and A. B. Pawlowska, “High-Dose Chemo-therapy and Stem Cell Rescue for High-Risk Ewing’s Family of Tumors,” Expert Review of Anticancer Therapy, Vol. 11, No. 2, 2011, pp. 251-262. doi:10.1586/era.10.215
[13] American Cancer Society, “High-Dose Chemotherapy and Stem Cell Transplant for Ewing Family of Tumors,” 2012. http://www.cancer.org/Cancer/EwingFamilyofTumors/Detailed-Guide/ewing-family-of-tumors-treating-high-dose-chemo-stem-cell
[14] N. Marina and P. A. Meyers, “High-Dose Therapy and Stem-Cell Rescue for Ewing’s Family of Tumors in Sec-ond Remission,” Journal of Clinical Oncology, Vol. 23, No. 19, 2005, pp. 4262-4264. doi:10.1200/JCO.2005.12.915
[15] S. Ferrari, K. S. Hall, R. Luksch, A. Tienghi, T. Wiebe, F. Fagioli, T. A. Alvegard, A. B. del Prever, A. Tamburini, M. Alberghini, L. Gandola, M. Mercuri, R. Capanna, S. Mapelli, A. Prete, M. Carli, P. Picci, E. Barbieri, G. Bacci and S. Smeland, “Nonmetastatic Ewing Family Tumors: High-Dose Chemotherapy with Stem Cell Rescue in Poor Responder Patients. Results of the Italian Sarcoma Group/Scandinavian Sarcoma Group III Protocol,” Annals of Oncology, Vol. 22, No. 5, 2011, pp. 1221-1227. doi:10.1093/annon
[16] N. Worel, J. F. Apperley, G. W. Basak, K. W. Douglas, I. H. Gabriel, C. Geraldes, K. Hübel, O. Jaksic, Z. Koristek, F. Lanza, R. Lemoli, G. Mikala, D. Selleslag, R. F. Duarte and M. Mohty, “European Data on Stem Cell Mobilization with Plerixafor in Patients with Nonhema-tologic Diseases: An Analysis of the European Consortium of Stem Cell Mobilization,” Transfusion, 2012. doi:10.1111/j.1537-2995.2012.03603.x
[17] P. Schlegel, H.-M. Teltschik, M. Pfeiffer, R. Handgret-inger, M. Schumm, E. Koscielniak, T. Feuchtinger, T. Klingebiel, P. Bader, P.-G. Schlegel, J. Greil and P. Lang, “Long-Term IL-2 Therapy after Transplantation of T Cell Depleted Stem Cells from Alternative Donors in Children,” Best Practice & Research in Clinical Haematology, Vol. 24, No. 3, 2011, pp. 443-452. doi:10.1016/j.beha.2011.04.007
[18] U. Thiel, S. Pirson, C. Müller-Spahn, H. Conrad, D. H. Busch, H. Bernhard, S. Burdach and G. H. S. Richter, “Specific Recognition and Inhibition of Ewing Tumour Growth by Antigen-Specific Allo-Restricted Cytotoxic T Cells,” British Journal of Cancer, Vol. 104, No. 6, 2011, pp. 948-956.
[19] R. Todorova, “Machanism of Transactivation by EAD Based on Protein-Protein Interaction Studies,” Acta Medica Bulgarica, Vol. 37, No. 2, 2010, pp. 58-64.
[20] J. S. Barber-Rotenberg, S. P. Selvanathan, Y. Kong, H. V. Erkizan, T. M. Snyder, S. P. Hong, C. L. Kobs, N. L. South, S. Summer, P. J. Monroe, M. Chruszcz, V. Dobrev, P. N. Tosso, L. J. Scher, W. Minor, M. L. Brown, S. J. Metallo, A. üren and J. A. Toretsky, “Single Enantiomer of YK-4-279 Demonstrates Specificity in Targeting the Oncogene EWS-FLI1,” Oncotarget, Vol. 3, No. 2, 2012, pp. 172-182.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.