Breast cancer: Small molecules targeting apoptosis, a prospective approach to safe scientific success

Abstract

Breast carcinoma represents the second leading cause of cancer death in developed countries amongst women. Current cytotoxic chemotherapy plays an important role in the management of patients with hormone-insensitive or metastatic breast carcinoma, although most of them ultimately develop recurrences. Therefore, there is a need for novel targets and treatment strategies in patients with advanced breast carcinoma that is refractory to conventional chemotherapy. This paper summarizes current knowledge on breast cancer targets and molecular mechanisms that follows apoptosis induction.

Share and Cite:

Choene, M. , Mthembu, N. , Dlamini, Z. , Mokgotho, M. , Wachira, J. and Motadi, L. (2012) Breast cancer: Small molecules targeting apoptosis, a prospective approach to safe scientific success. Advances in Bioscience and Biotechnology, 3, 833-844. doi: 10.4236/abb.2012.37104.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Parkin, D.M., Sitas, F., Chirenje, M., Stein, L., Abratt, R. and Wabinga, H. (2008) Part I: Cancer in indigenous Africans—Burden, distribution and trends. Lancet Oncology, 9, 683-692. doi:10.1016/S1470-2045(08)70175-X
[2] Park, S.J., Wu, C.H., Choi, M.R., Najafi, F., Emami, A. and Safa, A.R. (2006) P-glycoprotein enhances trailtriggered apoptosis in multidrug resistant cancer cells by interacting with the death receptor DR5. Biochemical Pharmacology, 72, 293-307. doi:10.1016/j.bcp.2006.04.024
[3] Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T. and Thun, M.J. (2008) Cancer statistics. A Cancer Journal for Clinicians, 58, 71-96. doi:10.3322/CA.2007.0010
[4] Nachmias, B., Ashhab, Y. and Ben-Yehuda, D. (2004) The inhibitor of apoptosis protein family (IAPs): An emerging therapeutic target in cancer. Seminars in Cancer Biology, 14, 231-243. doi:10.1016/j.semcancer.2004.04.002
[5] Chen, T., Pengetnze, Y. and Taylor, C.C. (2005) Src in- hibition enhances paclitaxel cytotoxicity in ovarian cancer cells by caspase-9-independent activation of caspase-3. Molecular Cancer Therapeutics, 4, 217-224.
[6] McPherson, K., Steel, C.M. and Duion, J.M. (2000) Breast cancer-epidemiology, risk factors and genetics. British Medical Journal, 321, 624-628. doi:10.1136/bmj.321.7261.624
[7] Kitada, S., Leone, M., Sareth, S., Zhai, D., Reed, J.C. and Pellecchia, M. (2003) Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-Cell lymphocyte/leukemia-2 proteins. Journal of Medicinal Chemistry, 46, 4259-4264. doi:10.1021/jm030190z
[8] Bray, F., McCarron, P. and Parkin, D.M. (2004) The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Research, 6, 229-239. doi:10.1186/bcr932
[9] Shelley, M.D., Hartley, L., Groundwater, P.W. and Fish, R.G. (2000) Structure-activity studies on gossypol in tumour cell lines, Anticancer Drugs, 11, 209-216. doi:10.1097/00001813-200003000-00009
[10] Chen, M. and Wang, J. (2002) Initiator caspases in apoptotis signaling pathways. Apoptosis, 7, 313-319. doi:10.1023/A:1016167228059
[11] JunWei, J., Stebbins, J.L., Kitada, S., Dash, R., Zhai, D., Placzek, W.J., Wu, B., Rega, M.F., Zhang, Z., Barile, E., Yang, L., Dahl, R., Fisher, P.B., Reed, J.C. and Pellecchia, M. (2011) An optically pure apogossypolone derivative as potent pan-active inhibitor of anti-apoptotic Bcl-2 family proteins. Cancer Molecular Targets and Therapeutics, 1, 1-14.
[12] Ghobrial, I.M., Witzig, T.E. and Adjei, A.A (2005) Targeting apoptosis pathways in cancer therapy. A Cancer Journal for Clinicians, 55, 178-194. doi:10.3322/canjclin.55.3.178
[13] Key, T.J., Verkasalo, P.K. and Banks, E. (2001) Epidemiology of breast cancer. The Lancet Oncology, 2, 133-140. doi:10.1016/S1470-2045(00)00254-0
[14] Lewis, J.S., Meeke, K., Osipo, C., Ross, E.A., Kidawi, N., Li, T., Bell, E., Chandel, N.S. and Jordan, V.C. (2005) Intrinsic mechanism of estradiol-induced apoptosis in breast cancer cells resistant to estrogen deprivation. Journal of the National Cancer Institute, 97, 1746-1759. doi:10.1093/jnci/dji400
[15] Tomek, S., Koestler, W., Horak, P., Grunt, T., Brodowicz, T., Pribill, I., Halaschek, J., Haller, G., Wiltschke, C., Zielinski, C.C. and Krainer, M. (2003) Trail-induced apoptosis and interaction with cytotoxic agents in soft tissue sarcoma cell lines. European Journal of Cancer, 39, 1318-1329. doi:10.1016/S0959-8049(03)00227-2
[16] Tutt, A., Robson, M., Garber, J.E., Domchek, S.M., Audeh, M.W., Weitzel, J.N., Friedlander, M., Arun, B., Loman, N., Schmutzler, R.K., Wardley, A., Mitchell, G., Earl, H., Wickens, M. and Carmichael, J. (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: A proof-of-concept trial. Lancet, 376, 235-244. doi:10.1016/S0140-6736(10)60892-6
[17] Welsch, P.L. and King, M. (2001) BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Human Molecular Genetics, 10, 705-713. doi:10.1093/hmg/10.7.705
[18] Wu, C.H., Kao, C.H. and Safa, A.R. (2008) TRAIL recombinant adenovirus triggers robust apoptosis in multidrug-resistant Hl-60/Vinc cells preferentially through death receptor DR5. Human Gene Therapy, 19, 731-143. doi:10.1089/hum.2008.001
[19] Soto-Cerratoa, V., Llagosteraa, E., Montanera, B., Schefferb, G.L. and Perez-Tomas, R. (2004) Mitochondria-mediated apoptosis operating irrespective of multidrug resistance in breast cancer cells by the anticancer agent prodigiosin. Biochemical Pharmacology, 68, 1345-1352. doi:10.1016/j.bcp.2004.05.056
[20] Park, S.K., Sanders, B.G. and Kline, K. (2010) Tocotrienols induce apoptosis in breast cancer cell lines via an endoplasmic reticulum stress-dependent increase in extrinsic death receptor signaling. Breast Cancer Research and Treatment, 124, 361-375. doi:10.1007/s10549-010-0786-2
[21] Foster, F.M., Owens, T.W., Tanianis-Hughes, J., Clarke, R.B., Brennan, K., Bundred, N.J. and Streuli, C.H. (2009) Targeting inhibitor of apoptosis proteins in combination with ErbB antagonists in breast cancer. Breast Cancer Research, 11, R41.
[22] Lorincz, A.M. and Sukumar, S. (2006) Molecular links between obesity and breast cancer. Endocrine-Related Cancer, 13, 279-292. doi:10.1677/erc.1.00729
[23] Loubser, F., Edge, J. and Fieggen, K. (2008) Epidemiology, risk factors and genetics of breast cancer. Continuing Medical Education, 26, 497-501.
[24] Boatright, K.M. and Salvesen, G.S. (2003) Mechanisms of caspase activation. Current Opinion in Cell Biology, 15, 725-731. doi:10.1016/j.ceb.2003.10.009
[25] Turner, N., Tutt, A. and Ashworth. A. (2005) Targeting the DNA repair defect of BRCA tumours. Current Opinion in Pharmacology, 5, 388-393. doi:10.1016/j.coph.2005.03.006
[26] Tutt, A. and Ashworth, A. (2002) The relationship between the roles of BRCA genes in DNA repair and cancer predisposition. Trends in Molecular Medicine, 8, 571-576. doi:10.1016/S1471-4914(02)02434-6
[27] Erickson, R.I., Tarrant, J., Cain, G., Lewin-Koh, G.-C., Dybdal, N., Wong, H., Blackwood, E., West, K., Steigerwalt, R., Mamounas, M., Flygare, J.A, Amemiya, K., Dambach, D., Fairbrother, W.J. and Diaz, D. (2012) Toxicity profile of small-molecule IAP antagonist GDC-0152 is linked to TNF-alpha pharmacology. Toxicological Sciences, 1-44.
[28] Hedau, S., Jain, N., Husain, S.A., Mandal, A.K., Ray, G., Shahid, M., Kant, R., Gupta, V., Shukla, N.K., Deo, S.S.V. and Das, B.C. (2004) Novel germline mutations in breast cancer susceptibility genes BRCA1, BRCA2 and p53 gene in breast cancer patients from India. Breast Cancer Research and Treatment, 88, 177-186. doi:10.1007/s10549-004-0593-8
[29] Volate, S.R., Kawasaki, B.T., Hurt, E.M., Milner, J.A. Kim, Y.S., White, J. and Farrar, W.L. (2010) Gossypol induces apoptosis by activating p53 in prostate cancer cells and prostate tumor-initiating cells. Molecular Cancer Therapeutics, 9, 1-17. doi:10.1158/1535-7163.MCT-09-0507
[30] Kasibhatla, S. and Tseng, B. (2003) Why target apoptosis in cancer treatment? Molecular Cancer Therapeutics, 2, 573-580.
[31] Seo, S.B., Hur, J.G., Kim, M.J., Lee, J.W., Kim, H.B., Bae, J.H., Kim, D.W., Kang, C.D. and Kim, S.H. (2010) TRAIL sensitizes MDR cells to MDR-related drugs by down-regulation of P-glycoprotein through inhibition of DNA-PKcs/Akt/GSK-3β pathway and activation of caspases. Molecular Cancer, 3, 1658.
[32] Warr, M.R. and Shore, G.C. (2008) Small-molecule Bcl-2 antagonists as targeted therapy in oncology. Current Oncology, 15, 256-261.
[33] Bender, C.E., Fitzgerald, P., Tait, S.W.G., Llambi, F., McStay, G.P., Tupper, D.O., Pellettieri, J., Alvarado, A.S., Salvesen, G.S. and Green, D.R. (2012) Mitochondrial pathway of apoptosis is ancestral in metazoans. PNAS, 109, 1-6.
[34] Porter, P. (2008) “Westernizing” women’s risks? Breast cancer in lower-income countries. The New England Journal of Medicine, 358, 213-216. doi:10.1056/NEJMp0708307
[35] Satoh, K., Kaneko, K., Hirota, M., Masamune, A., Satoh, A. and Shimosegawa, T. (2001) Expression of survivin is correlated with cancer cell apoptosis and is involved in the development of human pancreatic duct cell tumors. Cancer, 92, 271-278. doi:10.1002/1097-0142(20010715)92:2<271::AID-CNCR1319>3.0.CO;2-0
[36] Schimmer, A.D., O’Brien, S., Kantarjian, H., Brandwein, J., Cheson, B.D., Minden, M.D., Yee, K., Ravandi, F., Giles, F., Schuh, A., Gupta, V., Andreeff, M., Charles Koller, C., Chang, H., Kamel-Reid, S., Berger, M., Viallet, J. and Borthakur, G. (2008) A Phase I study of the panBcl-2 family inhibitor obatoclax mesylate in patients with advanced hematologic malignancies, Clinical Cancer Research, 14, 8295-8301. doi:10.1158/1078-0432.CCR-08-0999
[37] Fan, S., Meng, Q., Auborn, K., Carter, T. and Rosen, E.M. (2006) BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells. British Journal of Cancer, 94, 407-426. doi:10.1038/sj.bjc.6602935
[38] Powell, S.N. and Kachnic, L.A. (2003) Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene, 22, 5784-5791. doi:10.1038/sj.onc.1206678
[39] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2002) Molecular Biology of the Cell: Programmed Cell Death. 4th Edition, Garland Science, New York.
[40] Kishimoto, S., Kawazoe, Y., Ikeno, M., Fukushima, S. and Takeuchi, Y. (2005) Continuous exposure to low-dose cisplatin and apoptosis. Biological & Pharmaceutical Bulletin, 28, 1954-1957. doi:10.1248/bpb.28.1954
[41] King, M.C., Wieand, S., Hale, K., Lee, M., Walsh, T., Owens, K., Tait, J., Ford, L., Dunn, B.K., Costantino, J., Wickerham, L., Wolmark, N. and Fisher, B. (2001) Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) breast cancer prevention trial. The Journal of the American Medical Association, 286, 2251-2256. doi:10.1001/jama.286.18.2251
[42] Peeters, P.H.M., Verbeek, A.L.M., Krol, A., Matthyssen, M.M.M. and Waard, F. (1994) Age at menarche and breast cancer risk in nulliparous women. Breast Cancer Research and Treatment, 33, 55-61. doi:10.1007/BF00666071
[43] Imyanitov, E.N. and Hanson, K.P. (2004) Mechanisms of breast cancer. Discovery Today: Disease Mechanisms, 1, 235-245. doi:10.1016/j.ddmec.2004.09.002
[44] Cho, M.Y., Park, S.Y., Park, S., Lee, Y.R., Han, G.D. and Kim, J.A. (2012) Geranyl derivative of phloroacetophenone induces cancer cell-specific apoptosis through Bax-mediated mitochondrial pathway in MCF-7 human breast cancer cells. Biological & Pharmaceutical Bulletin, 35, 98-104. doi:10.1248/bpb.35.98
[45] Flygare, J.A., Beresini, M., Budha, N., Chan, H., Chan, I. T., Cheeti, S., Cohen, F., Deshayes, K., Doerner, K., Eckhardt, S.G., Elliott, L.O., Feng, B., Matthew, C., Franklin, M.C., Reisner, S.F., Gazzard, L., Halladay, J., Hymowitz, S.G., La, H., LoRusso, P., Maurer, B., Murray, L., Plise, E., Quan, C., Jean-Philippe Stephan, J.P., Young, S.G., Tom, J., Tsui, V., Um, J., Varfolomeev, E., Vucic, D., Wagner, A.J., Wallweber, H.J.A., Wang, L., Ware, J., Wen, Z., Wong, H., Wong, J.M., Wong, M., Wong, S., Yu,
[46] Herbst, R.S., Eckhardt, S.G., Kurzrock, R., Ebbinghaus, S., O’Dwyer, P.J., Gordon, M.S., Novotny, W., Goldwasser, M.A., Tohnya, T.M., Lum, B.L., Ashkenazi, A., Jubb, A.M. and Mendelson, D.S. (2010) Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. Journal of Clinical Oncology, 28, 2839-2846. doi:10.1200/JCO.2009.25.1991
[47] Gartner, E.M., Burger, A.M. and Lorusso, P.M. (2010) Poly (adpribose) polymerase inhibitors: A novel drug class with a promising future. The Cancer Journal, 16, 83- 90. doi:10.1097/PPO.0b013e3181d78223
[48] Liggins, J., Mulligan, A., Runswick, S. and Bingham, S.A. (2002) Daidzein and genistein content of cereals. European Journal of Clinical Nutrition, 56, 961-966. doi:10.1038/sj.ejcn.1601419
[49] Huang, S., Okumura, K. and Sinicrope, F.A. (2009) BH3 mimetic obatoclax enhances TRAIL-mediated apoptosis in human pancreatic cancer cells. Clinical Cancer Research, 15, 150-159. doi:10.1158/1078-0432.CCR-08-1575
[50] Jin, S., Zhang, Q.Y., Kang, X.M., Wang, J.X. and Zhao, W.H. (2010) Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Annals of Oncology, 21, 263-268. doi:10.1093/annonc/mdp499
[51] Dean, E.M., Ranson, M., Blackhall, F., Holt, S.V. and Dive, C. (2007) Novel therapeutic targets in lung cancer: Inhibitor of apoptosis proteins from laboratory to clinic. Cancer treatment reviews, 33, 203-212. doi:10.1016/j.ctrv.2006.11.002
[52] Hougardy, B.M.T., Maduro, J.H., van der Zee, A.G.J., Willemse, P.H.B., de Jong, S. and de Vries, E.G.E. (2005) Clinical potential of inhibitors of survival pathways and activators of apoptotic pathways in treatment of cervical cancer: Changing the apoptotic balance. The Lancet, 6, 589-598. doi:10.1016/S1470-2045(05)70281-3
[53] Zhou, J.H., Tang, X.Y., Zhao, R., Wang, H. and Xia, J. (2012) Effects of ribonuclease inhibitor on apoptosis and invasion of human breast cancer MDA-MB-231 cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 28, 260-264.
[54] Kawiak, A., Zawacka-Pankau, J. and Lojkowska, E. (2012) Plumbagin induces apoptosis in her2-overexpressing breast cancer cells through the mitochondrial-mediated pathway. Journal of Natural Products, 75, 747-751. doi:10.1021/np3000409
[55] von Haefen, C., Wieder, T., Essmann, F., Schulze-Osthoff, K., Dorken, B. and Daniel, P.T. (2003) Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop. Oncogene, 22, 2236-2247. doi:10.1038/sj.onc.1206280
[56] Altekruse, S.F., Kosary, C.L., Krapcho, M., Neyman, N., Aminou, R., Waldron, W., Ruhl, J., Howlader, N., Tatalovich, Z., Cho, H., Mariotto, A., Eisner, M.P., Lewis, D.R., Cronin, K., Chen, H.S., Feuer, E.J., Stinchcomb, D.G. and Edwards, B.K (2009) SEER Cancer Statistics Review, 1975-2007. National Cancer Institute.
[57] Gonzalez de Aguilar, J.L., Gordon, J.W., Rene, F., de Tapia, M., Lutz-Bucher, B., Gaiddon, C. and Loeffler, J.P. (2000) Alteration of the Bcl-x/Bax ratio in a transgenic mouse model of amyotrophic lateral sclerosis: Evidence for the implication of the p53 signaling pathway. Neurobiology of Disease, 7, 406-415. doi:10.1006/nbdi.2000.0295
[58] Hunter, A.M., LaCasse, E.C. and Korneluk, R.G (2007) The inhibitors of apoptosis (IAPs) as cancer targets, Apoptosis, 12, 1543-1568. doi:10.1007/s10495-007-0087-3
[59] Ambrosini, G., Adida, C., Sirugo, G. and Altieri, D.C. (1998) Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. Journal of Biological Chemistry, 273, 11177-11182. doi:10.1074/jbc.273.18.11177
[60] Balabhadrapathruni, S., Thomas, T.J., Yurkow, E.J., Amenta, P.S. and Thomas, T. (2000) Effects of genistein and structurally related phytoestrogens on cell cycle kinetics and apoptosis in MDA-MB-468 human breast cancer cells. Oncology Reports, 7, 3-12.
[61] Bodet, L., Gomez-Bougie, P., Touzeau, C. Dousset, C., Descamps, G., Maiga, S., Avet-Loiseau, H., Bataille, R., Moreau, P., Le Gouill, S., Pellat-Deceunynck, C. and Amiot, M. (2011) ABT-737 is highly effective against molecular subgroups of multiple myeloma. Blood, 118, 3901-3910. doi:10.1182/blood-2010-11-317438
[62] Butler, L.M., Potischman, N.A., Newman, B., Millikan, R.C., Brogan, D., Gammon, M.D., Swanson, C.A. and Brinton, L.A. (2000) Menstrual risk factors and early-onset breast cancer. Cancer Causes and Control, 11, 451-458. doi:10.1023/A:1008956524669
[63] Choudhuria, T., Pala, S., Agwarwalb, M.L., Dasa, T. and Saa, G. (2002) Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Letters, 512, 334-340. doi:10.1016/S0014-5793(02)02292-5
[64] Kita, A., Nakahara, T., Yamanaka, K., Nakata, M., Kaneko, N., Koutoku, N. and Sasamata, N. (2009) YM155: A small molecule survivin suppressant with potent antitumor effect in human breast cancer models. Cancer Research, 69, 3.
[65] Cummings, B.S. and Schnellmann, R.G. (2002) Cisplatin-induced renal cell apoptosis: Caspase-3-dependent and -independent pathways. Journal of Pharmacology and Experimental Therapeutics, 302, 8-17. doi:10.1124/jpet.302.1.8
[66] Zhou, H., Zhang, Y., Yu, F., Chan, L. and Lee, A.S. (2011) Novel mechanism of anti-apoptotic function of 78-kDa Glucose-Regulated Protein (GRP78) endocrine resistance factor in breast cancer, through release of b-cell lymphoma 2 (bcl-2) from bcl-2-interacting killer (bik). The Journal of Biological Chemistry, 286, 25687-25696. doi:10.1074/jbc.M110.212944

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.