The Structure and Magnetic Properties of Co77Zr18W5 Melt-Spun Ribbons


Based on X-ray diffraction, microscopic and magnetic analysis, the structure and magnetic properties of Co77Zr18W5 melt-spun ribbons were studied in this paper. A new element to stabilize the metastable Co5Zr phase was found and the coercivity observed in Co-Zr alloys can be obviously enhanced by proper tungsten substitution. The Curie temperature of Co77Zr18W5 ribbons is 475℃ which suggests that W doped Co-Zr alloys may become an attractive candidate perma- nent magnets for practical applications in high temperature. Annealing of the Co77Zr18W5 ribbons results in a decrease of the coercivity which confirmed that the hard magnetic phase is Co5Zr phase in 77Zr18W5 melt-spun ribbons.

Share and Cite:

S. Xu, D. Xu, Z. Hou, J. Zhang, F. Su, L. Sun and W. Wang, "The Structure and Magnetic Properties of Co77Zr18W5 Melt-Spun Ribbons," World Journal of Condensed Matter Physics, Vol. 2 No. 4, 2012, pp. 197-201. doi: 10.4236/wjcmp.2012.24033.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. M. Gabay, Y. Zhang, G. C. Hadjipanayis, “Cobalt-Rich Magnetic Phases in Zr-Co Alloys,” Journal of Magnetiam and Magnetic Materials, Vol. 236, No. 1-2, 2001, pp. 37-41. doi:10.1016/S0304-8853(01)00446-2
[2] B. G. Shen, L. Y. Yang, L. Cao and H. Q. Guo, “Hard Magnetic Properties in Melt-Spun Co82-xFexZr18 Alloys,” Journal of Applied Physics, Vol. 73, No. 10, 1993, pp. 5932-5934. doi:10.1063/1.353525
[3] J. B. Zhang, Q. W. Sun, W. Q. Wang and F. Su, “Effects of Mo Additive on Structure and Magnetic Properties of Co82Zr18 Alloy,” Journal of Alloys and Compounds, Vol. 474, No. 1-2, 2009, pp. 48-51. doi:10.1016/j.jallcom.2008.07.004
[4] G. C. Jeong and H. W. Kwon, “Study of Coercivity in Mechanically Alloyed Co-Zr System,” Journal of Magnetics, Vol. 67, No. 1, 2007, pp. 45-48. doi:10.4283/JMAG.2007.12.1.045
[5] T. Saito, Y. Kamagata and W. Q. Wang, “The Origin of High-Saturation Magnetization in Co-Zr-C Melt-Spun Ribbons,” IEEE Transactions on Magnetics, Vol. 41, No. 10, 2005, pp. 3787-3789. doi:10.1109/TMAG.2005.854690
[6] L. Y. Chen, H. W. Chang, C. H. Chiu, C. W. Chang and W. C. Chang, “Magnetic Properties, Phase Evolution, and Coercivity Mechanism of CoxZr98-xB2 (x = 74 - 86) Nano-composites,” Journal of Applied Physics, Vol. 97, No. 10, 2005, pp. 10F307-3. doi:10.1063/1.1853275
[7] T. Saito, “High Performance Co-Zr-B Melt-Spun Ribbons,” Applied Physics Letters, Vol. 82, No. 14, 2003, pp. 2305-2307. doi:10.1063/1.1565694
[8] C. Gao, H. Wan and G. C. Hadjipanayis, “High Coercivity in Non-Rare-Earth Containing Alloys,” Journal of Alloys and Compounds, Vol. 67, No. 9, 1990, pp. 4960-4962. doi:10.1063/1.344747
[9] T. Ishikawa and K. Ohmori, “Hard Magnetic Phase in Rapidly Quenched Zr-Co-B Alloys,” IEEE Transactions on Magnetics, Vol. 26, No. 5, 1990, pp. 1370-1372. doi:10.1109/20.104381
[10] G. V. Ivanova, N. N. Shchegoleva and A. M. Gabay, “Crystal Structure of Zr2Co11 Hare Magnetic Copound,” Journal of Alloys and Compounds, Vol. 432, No. 1-2, 2007, pp. 135-141. doi:10.1016/j.jallcom.2006.05.122
[11] T. Saito, “The Origin of the Coercivity in Co-Zr System Alloys,” IEEE Transactions on Magnetics, Vol. 39, No. 5, 2003, pp. 2890-2893. doi:10.1109/TMAG.2003.815738
[12] K. J. Strnat, G. Hoffer, J. C. Olson, W. Ostertag and J. J. Becker, “A Family of New Cobalt-Base Permanent Magnet Materials,” Journal of Applied Physics, Vol. 38, No. 3, 1967, pp. 1001-1002. doi:10.1063/1.1709459
[13] T. Saito, “Magnetization Process in Co-Zr-B Permanent-Magnet Materials,” IEEE Transactions on Magneics, Vol. 124, No. 10, 2004, pp. 876-880. doi:10.1541/ieejfms.124.876
[14] J. J. becker, “Reversal Mechanism in Copper-Modified Cobalt-Rare-Earths,” IEEE Transactions on Magnetics, Vol. 12, No. 6, 1976, pp. 965-967. doi:10.1109/TMAG.1976.1059153

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.