Share This Article:

Sensitive Colorimetric and Fluorescent Detection of Mercury Using Fluorescein Derivations

Abstract Full-Text HTML XML Download Download as PDF (Size:2875KB) PP. 44-52
DOI: 10.4236/ojab.2012.13006    6,773 Downloads   14,714 Views   Citations


A colorimetric and fluorometric dual-model probe for mercury (II) ion was developed employing fluorescein hydrazide (FH) in ethanol-HEPES solution (1:1, v/v, pH 8.0). The probe exhibited high selectivity and sensitivity for Hg2+ detection using UV/Vis and fluorescence spectroscopy. Addition of Hg2+ caused a visual color change from colorless to coloured and a fluorescence change from colorless to bright green. Other metal ions did not interfere with the detection of Hg2+.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Xie, Z. , Huo, F. , Su, J. , Yang, Y. , Yin, C. , Yan, X. and Jin, S. (2012) Sensitive Colorimetric and Fluorescent Detection of Mercury Using Fluorescein Derivations. Open Journal of Applied Biosensor, 1, 44-52. doi: 10.4236/ojab.2012.13006.


[1] A. P. De Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, “ChemInform Abstract: Signaling Recognition Events with Fluorescent Sensors and Switches,” Chemical Reviews, Vol. 97, No. 5, 1997, pp. 1515-1566. doi:10.1002/chin.199744337
[2] X. Peng, J. Du, J. Fan, J. Wang, Y. Wu, J. Zhao, S. Sun and T. Xu, “A Selective Fluorescent Sensor for Imaging Cd2+ in Living Cells,” Journal of the American Chemical Society, Vol. 129, No. 6, 2007, pp. 1500-1501. doi:10.1021/ja0643319
[3] M. Royzen, Z. Dai and J. W. Cannry, “Ratiometric Displacement Approach to Cu (II) Sensing by Fluorescence,” Journal of the American Chemical Society, Vol. 127, No. 6, 2005, pp. 1612-1613. doi:10.1021/ja0431051
[4] P. M. Bolger and B. A. Schwetz, “Mercury and Health,” The New England Journal of Medicine, Vol. 347, No. 22, 2002, pp. 1735-1736. doi:10.1056/NEJMp020139
[5] H. H. Harris, I. J. Pickering and G. N. George, “The Chemical Form of Mercury in Fish,” Science, Vol. 301, No. 5637, 2003, p. 1203. doi:10.1126/science.1085941
[6] T. W. Clarkson, L. Magos and G. J. Myers, “The Toxicology of Mercury-Current Exposures and Clinical Mani- festations,” The New England Journal of Medicine, Vol. 349, No. 18, 2003, pp. 1731-1737. doi:10.1056/NEJMra022471
[7] A. Renzoni, F. Zino and E. Franchi, “Mercury Levels along the Food Chain and Risk for Exposed Populations, Environmental Research,” Vol. 77, No. ER983832, 1998, pp. 68-72. doi:10.1006/enrs.1998.3832
[8] D. B. Gil, M. I. Rodriguez-Cáceres, M. del C. Hurtado- Sánchez and A. M. de la Pena, “Fluorescent Determination of Hg2+ in Water and Fish Samples Using a Chemodosimeter Based in a Rhodamine 6G Derivative and a Portable Fiber-Optic Spectrofluorimeter,” Applied Spectroscopy, Vol. 64, No. 5, 2010, pp. 520-527. doi:10.1366/000370210791211600
[9] O. Malm, “Gold Mining as a Source of Mercury Exposure in the Brazilian Amazon,” Environmental Research, Vol. 77, 1998, pp. 73-78, Article ID: 983828. doi:10.1006/enrs.1998.3828
[10] E. M. Nolan and S. J. Lippard, “Turn-On and Ratiometric Mercury Sensing in Water with a Red-Emitting Probe,” Journal of the American Chemical Society, Vol. 129, No. 18, 2007, pp. 5910-5918. doi:10.1021/ja068879r
[11] S. Hardy and P. Jones, “Capillary Electrophoresis Determination of Methylmercury in Fish and Crab Meat after Extraction as the Dithizone Sulphonate Complex,” Journal of Chromatography A, Vol. 791, No. 1-2, 1997, pp. 333-338. doi:10.1016/S0021-9673(97)00829-7
[12] Z. D. Wang, J. H. Lee and Y. Lu, “Highly Sensitive ‘Turn- On’ Fluorescent Sensor for Hg2+ in Aqueous Solution Based on Structure-Switching DNA,” Chemical Communication, No. 45, 2008, pp. 6005-6007. doi:10.1039/b812755g
[13] M. Harada, “Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution,” Critical Reviews in Toxicology, Vol. 25, No. 1, 1995, pp. 1-24. doi:10.3109/10408449509089885
[14] L. Prodi, C. Bargossi, M. Montalti, N. Zaccheroni, N. Su, J. S. Bradshaw, R. M. Izatt and P. B. Savage, “An Effective Fluorescent Chemosensor for Mercury Ions,” Journal of the American Chemical Society, Vol. 122, No. 28, 2000, pp. 6769-6770. doi:10.1021/ja0006292
[15] X. Guo, X. Qian and L. Jia, “A Highly Selective and Sensitive Fluorescent Chemosensor for Hg2+ in Neutral Buffer Aqueous Solution,” Journal of the American Chemical Society, Vol. 126, No. 8, 2004, pp. 2272-2278. doi:10.1021/ja037604y
[16] Y. K. Yang, K. J. Yook and J. Tae, “A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg2+ Ions in Aqueous Media,” Journal of the American Chemical Society, Vol. 127, No. 48, 2005, pp. 16760-16761. doi:10.1021/ja054855t
[17] M. H. Ha-Thi, M. Penhoat, V. Michelet and I. Leray, “Highly Selective and Sensitive Phosphane Sulfide Derivative for the Detection of Hg2+ in an Organoaqueous Medium,” Organic Letters, Vol. 9, No. 6, 2007, pp. 1133- 1136. doi:10.1021/ol070118l
[18] E. M. Nolan and S. J. Lippard, “Turn-On and Ratiometric Mercury Sensing in Water with a Red-Emitting Probe,” Journal of the American Chemical Society, Vol. 129, No. 18, 2007, pp. 5910-5918. doi:10.1021/ja068879r
[19] Z. X. Han, H. Y. Luo, X. B. Zhang, R. M. Kong, G. L. Shen and R. Q. Yua, “A Ratiometric Chemosensor for Fluorescent Determination of Hg(2+) Based on a New Porphyrin-Quinoline Dyad,” Spectrochimica Acta Part A, Vol. 72, No. 5, 2009, pp. 1084-1088. doi:10.1016/j.saa.2009.01.003
[20] Y. M. Li, X. L. Zhang, B. C. Zhu, J. Xue and L. L. Yan, “A Disulfide-Linked Naphthalimide Dimer for Hg(II) Detection in Aqueous Solution,” The Journal of Fluorescence, Vol. 21, No. 4, 2011, pp. 1343-1348. doi:10.1007/s10895-010-0820-0
[21] S. V. Wegner, A. Okesli, P. Chen and C. He, “Design of an Emission Ratiometric Biosensor from MerR Family Proteins: A Sensitive and Selective Sensor for Hg2+,” Journal of the American Chemical Society, Vol. 129, No. 12, 2007, pp. 3474-3475. doi:10.1021/ja068342d
[22] K. C. Chiang, C. Huang, C. W. Liu and H. T. Chang, “Oligonucleotide-Based Fluorescence Probe for Sensitive and Selective Detection of Mercury(II) in Aqueous Solution,” Analytical Chemistry, Vol. 80, No. 10, 2008, pp. 3716-3721. doi:10.1021/ac800142k
[23] C. X. Tang, Y. Zhao, X. W. He and X. B. Yin, “A ‘Turn- On’ Electrochemiluminescent Biosensor for Detecting Hg2+ at Femtomole Level Based on the Intercalation of Ru(phen)32+ into ds-DNA,” Chemical Communications, Vol. 46, No. 47, 2010, pp. 9022-9024. doi:10.1039/c0cc03495a
[24] M. Virta, J. Lampinen and M. Karp, “A Luminescence- Based Mercury Biosensor,” Analytical Chemistry, Vol. 67, No. 3, 1995, pp. 667-669. doi:10.1021/ac00099a027
[25] X. Liu, Y. Tang, L. Wang, J. Zhang, S. Song, C. Fan and S. Wang, “Optical Detection of Mercury (II) in Aqueous Solutions Using Conjugated Polymers and Label-Free Oligonucleotides,” Advanced Materials, Vol. 19, No. 11, 2007, pp. 1471-1474. doi:10.1002/adma.200602578
[26] Y. Zhao and Z. Zhong, “Tuning the Sensitivity of a Fold- amer-Based Mercury Sensor by Its Folding Energy,” Journal of the American Chemical Society, Vol. 128, No. 31, 2006, pp. 9988-9989. doi:10.1021/ja062001i
[27] W. H. Chan, R. H. Yang and K. M. Wang, “Development of a Mercury Ion-Selective Optical Sensor Based on Fluorescence Quenching of 5,10,15,20-Tetraphenylporphyrin,” Analytica Chimica Acta, Vol. 444, No. 2, 2011, pp. 261-269. doi:10.1016/S0003-2670(01)01106-0
[28] V. Ostatna and E. Palecek, “Self-Assembled Monolayers of Thiol-End-Labeled DNA at Mercury Electrodes,” Langmuir, Vol. 22, No. 15, 2006, pp. 6481-6484. doi:10.1021/la061424v
[29] G. K. Darbha, A. Ray and P. C. Ray, “Gold Nanoparticle- Based Miniaturized Nanomaterial Surface Energy Transfer Probe for Rapid and Ultrasensitive Detection of Mercury in Soil, Water, and Fish,” ACS Nano, Vol. 1, No. 3, 2007, pp. 208-214. doi:10.1021/nn7001954
[30] D. Li, A. Wieckowska and I. Willner, “Optical Analysis of Hg2+ Ions by Oligonucleotide-Au Nanoparticles Hybrids and DNA-Based Machines,” Angewandte Chemie International Edition, Vol. 47, No. 21, 2008, pp. 3927- 3931. doi:10.1002/ange.200705991
[31] X. Xue, F. Wang and X. Liu, “One-Step, Room Temperature, Colorimetric Detection of Mercury (Hg2+) Using DNA/Nanoparticle Conjugates,” Journal of the American Chemical Society, Vol. 130, No. 11, 2008, pp. 3244-3245. doi:10.1021/ja076716c
[32] L. Wang, J. Zhang, X. Wang, Q. Huang, D. Pan, S. Song and C. Fan, “Gold Nanoparticle-Based Optical Probes for Target-Responsive DNA Structures,” Gold Bull, Vol. 41, No. 1, 2008, pp. 37-41. doi:10.1007/BF03215621
[33] X. J. Zhu, S. T. Fu, W. K. Wong, J. P. Guo and W. Y. Wong, “A Near-Infrared Fluorescent Chemodosimeter for Mercuric Ion Based on an Expanded Porphyrin,” Angewandte Chemie International Edition, Vol. 118, No. 19, 2006, pp. 3222-3226. doi:10.1002/ange.200600248
[34] J. Wang and X. Qian, “A Series of Polyamide Receptor Based PET Fluorescent Sensor Molecules: Positively Cooperative Hg2+ Ion Binding with High Sensitivity,” Organic Letters, Vol. 8, No. 17, 2006, pp. 3721-3724. doi:10.1021/ol061297u
[35] L. Praveen, V. B. Ganga, R. hirumalai, T. T. Sreeja, M. L. P. Reddy and R. L. Varma, “A New Hg2+-Selective Fluorescent Sensor Based on a 1,3-Alternate Thiacalix[4]arene Anchored with Four 8-Quinolinoloxy Groups,” Inorganic Chemistry, Vol. 46, No. 16, 2007, pp. 6277-6282. doi:10.1021/ic070259j
[36] E. M. Nolan and S. J. Lippard, “Tools and Tactics for the Optical Detection of Mercuric Ion,” Chemical Reviews, Vol. 108, No. 50, pp. 3443-3480. doi:10.1002/chin.200850280
[37] M. H. Lee, S. Lee, S. H. Kim, C. Kang and J. S. Kim, “Nanomolar Hg(II) Detection Using Nile Blue Chemodosimeter in Biological Media,” Organic Letters, Vol. 11, No. 10, 2009, pp. 2101-2104, doi:10.1021/ol900542y
[38] S. Yoon, E. W. Miller, Q. He, P. H. Do and C. J. Chang, “A Bright and Specific Fluorescent Sensor for Mercury in Water, Cells, and Tissue,” Angewandte Chemie International Edition, Vol. 46, No. 35, 2007, pp. 6658-6661. doi:10.1002/anie.200701785
[39] M. Zhu, M. Yuan, X. Liu, J. Xu, J. Lv, C. Huang, H. Liu, Y. Li, S. Wang and D. Zhu, “Visible Near-Infrared Chemosensor for Mercury Ion,” Organic Letters, Vol. 10, No. 7, 2008, pp. 1481-1484. doi:10.1021/ol800197t
[40] A. B. Othman, J. W. Lee, J. S. Wu, J. S. Kim, R. Abidi, P. Thuery, J. M. Strub, A. V. Dorsselaer and J. Vicens, “Calix[4]arene-based, Hg2+-Induced Intramolecular Fluorescence Resonance Energy Transfer Chemosensor,” Journal of Organic Chemistry, Vol. 72, No. 20, 2007, pp. 7634-7640. doi:10.1021/jo071226o
[41] S. H. Kim, J. S. Kim, S. M. Park and S. K. Chang, “Hg2+- Selective OFF-ON and Cu2+-Selective ON-OFF Type Fluoroionophore Based upon Cyclam,” Organic Letters, Vol. 8, No. 3, 2006, pp. 371-374. doi:10.1021/ol052282j
[42] J. V. Ros-Lis, R. Martinez-Manez, K. Rurack, F. Sancenon, J. Soto and M. Spieles, “Highly Selective Chromogenic Signaling of Hg2+ in Aqueous Media at Nanomolar Levels Employing a Squaraine-Based Reporter,” Inorganic Chemistry, Vol. 43, No. 17, 2004, pp. 5183- 5185. doi:10.1021/ic049422q
[43] Y. Cheng, M. Zhang, H. Yang, F. Li, T. Yi, C. Huang, “Azo Dyes Based on 8-Hydroxyquinoline Benzoates: Synthesis and Application as Colorimetric Hg2+-Selective Chemosensors,” Dyes and Pigments, Vol. 76, No. 3, 2008, pp. 775-783. doi:10.1016/j.dyepig.2007.01.022
[44] A. Caballero, R. Martinez, V. Lloveras, I. Ratera, J. Vidal-Gancedo, K. Wurst, A. Tárraga, P. Molina and J. Veciana, “Highly Selective Chromogenic and Redox or Fluorescent Sensors of Hg2+ in Aqueous Environment Based on 1,4-Disubstituted Azines,” Journal of the American Chemical Society, Vol. 127, No. 45, 2005, pp. 15666- 15667. doi:10.1021/ja0545766
[45] G. Hennrich, W. Walther, U. Resch-Genger and H. Sonnenschein, “Cu(II)- and Hg(II)-Induced Modulation of the Fluorescence Behavior of a Redox-Active Sensor Molecule,” Inorganic Chemistry, Vol. 40, No. 4, 2001, pp. 641-644. doi:10.1021/ic000827u
[46] G. Zhang, D. Zhang, S. Yin, X. Yang, Z. Shuaia and D. Zhu, “1,3-Dithiole-2-thione Derivatives Featuring an Anthracene Unit: New Selective Chemodosimeters for Hg(II) ion,” Chemical Communication, Vol. 16, 2005, pp. 2161- 2163. doi:10.1039/b417952h
[47] E. M. Nolan, M. E. Racine and S. J. Lippard, “Selective Hg(II) Detection in Aqueous Solution with Thiol Derivatized Fluoresceins,” Inorganic Chemistry, Vol. 45, No. 6, 2006, pp. 2742-2749. doi:10.1021/ic052083w
[48] X. Q. Chen and H. M. Ma, “A Selective Fluorescence- On Reaction of Spiro form Fluorescein Hydrazide with Cu(II),” Analytica Chimica Acta, Vol. 575, No. 2, 2006, pp. 217-222. doi:10.1016/j.aca.2006.05.097
[49] T. Li, Z. Yang, Y. Li, Z. Liu, G. Qi and B. Wang, “A Novel Fluorescein Derivative as a Colorimetric Chemosensor for Detecting Copper(II) Ion,” Dyes and Pigments, Vol. 88, No. 1, 2011, pp. 103-108. doi:10.1016/j.dyepig.2010.05.008
[50] G. M. Sheldrick, “SADABS,” University of Gottingen, Gottingen, 1997.
[51] G. M. Sheldrick, “Program for the Refinement of Crystal Structure,” University of Goettingen, Gottingen, 1997
[52] X. F. Yang, D. B. Wu and H. Li, “Sensitive Determination of Cobalt(II) Using a Spiro Fluorescein Hydrazide as a Chemiluminogenic Reagent,” Microchimica Acta, Vol. 149, No. 1-2, 2005, pp. 123-129. doi:10.1007/s00604-004-0285-4
[53] V. Dujols, F. Ford and A. W. Czarnik, “A Long- Wavelength Fluorescent Chemodosimeter Selective for Cu(II) Ion in Water,” Journal of the American Chemical Society, Vol. 119, No. 31, 1997, pp. 7386-7387.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.