Control of light environment: A key technique for high-yield and high-quality vegetable production in protected farmland


Vegetable crops such as cucumber and tomato are grown widely through the world using not only field but also protected farmland. Sensitive responses of many vegetables have been widely reported to environmental conditions such as light, air temperature, relative humility, and CO2 concentration in the past years. Among these environmental factors, light is considered to be the most important one for vegetable growth and development, especially in protected farmland. Therefore, lots of researches on effects of light environment, including light intensity, light quality, photoperiod, and light direction, on vegetable growth and development have been done in order to optimize the environmental conditions for high-yield and high-quality vegetable production in protected farmland. In this review, recent advances in light environment control for vegetable production in protected farmland have been reviewed and the prospective for the future research has been proposed as well.

Share and Cite:

Yang, X. , Wang, X. , Wang, L. and Wei, M. (2012) Control of light environment: A key technique for high-yield and high-quality vegetable production in protected farmland. Agricultural Sciences, 3, 923-928. doi: 10.4236/as.2012.37112.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] García-Plazaola, J.I., Becerril, J.M., Hernández, A., Niinemets, ü. and Kollist, H. (2004) Acclimation of antioxidant pools to the light environment in a natural forest canopy. New Phytologist, 163, 87-97. doi:10.1111/j.1469-8137.2004.01096.x
[2] Szabo, I., Bergantino, E. and Giacometti, G.M. (2005) Light and oxygenic photosynthesis: Energy dissipation as a protection mechanism against photo-oxidation. EMBO Reports, 6, 629-634. doi:10.1038/sj.embor.7400460
[3] Kreslavski, V.D., Carpentier, R., Klimov, V.V., Murata, N. and Allakhverdiev, C.I. (2007) Molecular mechanism of stress resistance of the photosynthetic apparatus. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 1, 185-207. doi:10.1134/S1990747807030014
[4] Murata, N., Takahashi, S., Nishiyama, Y. and Allakhverdiev, S.I. (2007) Photoinhibition of photosystem II under environmental stress. Biochimica and Biophysica Acta, 1767, 414-421. doi:10.1016/j.bbabio.2006.11.019
[5] Demmig-Adams, B. and Adams, W.W. (2000) Photosynthesis: Harvesting sunlight safely. Nature, 403, 371-374. doi:10.1038/35000315
[6] Li, Y.Y., Sperryb, J.S. and Shao, M.G. (2009) Hydraulic conductance and vulnerability to cavitation in corn (Zea mays L.) hybrids of differing drought resistance. Environmental and Experimental Botany, 66, 341-346. doi:10.1016/j.envexpbot.2009.02.001
[7] Govindacharya, S., Bukhovab, N.G., Jolya, D. and Carpentiera, R. (2004) Photo-system II inhibition by moderate light under low temperature in intact leaves of chilling-sensitive and -tolerant plants. Physiologia Plantarum, 121, 322-333. doi:10.1111/j.0031-9317.2004.00305.x
[8] Kudoh, H. and Sonoike, K. (2002) Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta, 215, 541-548. doi:10.1007/s00425-002-0790-9
[9] Gerotto, C., Alboresi, A., Giacometti, G.M., Bassi, R. and Morosinotto, T. (2011) Role of PSBS and LHCSR in Physcomitrella patens acclimation to high light and low temperature. Plant, Cell and Environment, 34, 922-932. doi:10.1111/j.1365-3040.2011.02294.x
[10] Krause, G.H. (1994) Photoinhibition induced by low temperatures. In: Baker, N.R. and Bowyer, J.R., Eds., Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field, BIOS Scientific Publishers, Oxford.
[11] Kim, H.J., Kim Y.K., Park, J.Y. and Kim, J. (2002) Light signaling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant Journal, 29, 693-704. doi:10.1046/j.1365-313X.2002.01249.x
[12] Catalá, R., Medina, J. and Salinas, J. (2011) Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 108, 16475-16480. doi:10.1073/pnas.1107161108
[13] Hovi-Pekkanen, T. and Tahvonen, R. (2008) Effects of interlighting on yield and external fruit quality in year-round cultivated cucumber. Scientia Horticulturae, 116, 152-161. doi:10.1016/j.scienta.2007.11.010
[14] Liu, B. and Heins, R.D. (2002) Photothermal ratio affects plant quality in “Freedom” poinsettia. Journal of America Society for Horticultural Science, 127, 20-26.
[15] Moe, R., Grimstad, S.O. and Gisler?d, H.R. (2006) The use of artificial light in year round production of greenhouse crops in Norvey. Acta Horticulturae, 711, 35-42.
[16] Wang, H., Gu, M., Gui, J.X., Shi, K., Zhou, Y.H. and Yu, J.Q. (2009) Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Journal of Photochemistry and Photobiology B: Biology, 96, 30-37. doi:10.1016/j.jphotobiol.2009.03.010
[17] Yu, H. and Ong, B.L. (2003) Effect of radiation quality on growth and photosynthesis of Acacia mangium seedlings. Photosynthetica, 41, 349-355. doi:10.1023/B:PHOT.0000015458.11643.b2
[18] Allen, D.J., McKee, I.F., Farage, P.K. and Baker, M.R. (1997) Analysis of limitations to CO2 assimilation on exposure of leaves of two Brassica napus cultivars to UV-B. Plant, Cell and Environment, 20, 633-640. doi:10.1111/j.1365-3040.1997.00093.x
[19] Allen, D.J., Nogués, S. and Baker, N.R. (1998) Ozone depletion and increased UV-B radiation: Is there a real threat to photosynthesis? Journal of Experimental Botany, 49, 1775-1788.
[20] Nogués, S. and Baker, N.R. (1995) Evaluation of the role of damage to photosystem II in the inhibition of CO2 assimilation in pea leaves on exposure to UV-B. Plant, Cell and Environment, 18, 781-787. doi:10.1111/j.1365-3040.1995.tb00581.x
[21] Rockwell, N.C., Su, Y.S. and Lagarias, J.C. (2006) Phytochrome structure and signaling mechanisms. Annual Review of Plant Biology, 57, 837-858. doi:10.1146/annurev.arplant.56.032604.144208
[22] Schafer, E. and Nagy, F. (2006) Photomorphogenesis in plants and bacteria. Springer, Dordrecht. doi:10.1007/1-4020-3811-9
[23] Quail, P.H. (2010) Phytochromes. Current Biology, 20, R504-R507. doi:10.1016/j.cub.2010.04.014
[24] Leivar, P., Montec, E., Megan, M., Cohn, M.M. and Quail, P.H. (2012) Phytochrome signaling in green arabidopsis seedlings: Impact assessment of a mutually negative phyB-PIF feedback loop. Molecular Plant, 5, 208-223. doi:10.1093/mp/sss031
[25] Soy, J., Leivar, P., González-Schain, N., Sentandreu, M., Prat, S., Quail, P.H. and Monte, E. (2012) Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis. Plant Journal, 71, 390-401.
[26] Facella, P., Daddiego, L., Giuliano, G. and Perrotta, G. (2012) Gibberellin and auxin influence the diurnal transcription pattern of photoreceptor genes via CRY1a in tomato. PLoS ONE, 7, e30121. doi:10.1371/journal.pone.0030121
[27] Xiong, J.Q., Patil, G.G., Moe, R. and Torre, S. (2011) Effects of diurnal temperature alternations and light quality on growth, morphogenesis and carbohydrate content of Cucumis sativus L. Scientia Horticulturae, 128, 54-60. doi:10.1016/j.scienta.2010.12.013
[28] Franklin, K.A. and Whitelam, G.C. (2007) Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nature Genetics, 39, 1410-1413. doi:10.1038/ng.2007.3
[29] Terefe, D. and Tatlioglu, T. (2005) Isolation of a partial sequence of a putative nucleotide sugar epimerase, which may involve in stamen development in cucumber (Cucumis sativus L.). Theoretical and Applied Genomics, 111, 1300-1307. doi:10.1007/s00122-005-0058-4
[30] Chen, H.M., Tian, Y., Lu, X.Y. and Liu, X.H. (2011) The inheritance of two novel subgynoecious genes in cucumber (Cucumis sativus L.). Scientia Horticulturae, 127, 464-467. doi:10.1016/j.scienta.2010.11.004
[31] Yamasaki, S., Fujii, N. and Takahashi, H. (2003) Photoperiodic regulation of CS-ACS2, CS-ACS4 and CS-ERS gene expression contributes to the femaleness of cucumber flowers through diurnal ethylene production under short-day conditions. Plant, Cell and Environment, 26, 537-546. doi:10.1046/j.1365-3040.2003.00984.x
[32] Tanurdzic, M. and Banks, J.A. (2004) Sex-determining mechanisms in land plants. The Plant Cell, 16, S61-S71. doi:10.1105/tpc.016667
[33] Miao, M.M., Yang, X.G., Han, X.S. and Wang K.S. (2011) Sugar signaling is involved in the sex expression response of monoecious cucumber to low temperature. Journal of Experimental Botany, 62, 797-804. doi:10.1093/jxb/erq315
[34] Astmon, D. and Galun, E. (1962) Physiology of sex in Cucumis sativus (L.) leaf age patterns and sexual differentiation of floral buds. Annals of Botany, 26, 137-146.
[35] Rudich, J., Baker, L.R., Scott, J.W. and Sell, H.M. (1976) Phenotypic stability and ethylene evolution in androecious cucumber. Journal of the American Society for Horticultural Science, 101, 48-51.
[36] Cantliffe, D.J. (1981) Alteration of sex expression in cucumber due to changes in temperature, light intensity, and photoperiod. Journal of the American Society for Horticultural Science, 106, 133-136.
[37] Jutamanee, K., Saito, T. and Subhadrabandhu, S. (1994) Control of sex expression in cucumber by photoperiod, defoliation, and plant growth regulators. Kasetsart Journal (Natural Science), 28, 626-631.
[38] Wu, T., Qin, Z.W., Zhou, X.Y., Feng, Z. and Du, Y.L. (2010) Transcriptome profile anal-ysis of floral sex determination in cucumber. Journal of Plant Physiology, 167, 905-913. doi:10.1016/j.jplph.2010.02.004
[39] Rosenthal, S.I. and Camm, E.L. (1996) Effects of air temperature, photoperiod and leaf age on foliar senescence of western larch (Larix occidentalis Nutt.) in environmentally controlled chambers. Plant, Cell and Environment, 19, 1057-1065. doi:10.1111/j.1365-3040.1996.tb00212.x
[40] Zhao, H., Li, Y., Duan, B., Korpelainen, H. and Li, C. (2009) Sex-related adaptive responses of Populus cathayana to photoperiod transitions. Plant, Cell and Environment, 32, 1401-1411. doi:10.1111/j.1365-3040.2009.02007.x
[41] Moccaldi, L.A. and Runkle, E.S. (2007) Modeling the effects of temperature and photosynthetic daily light integral on growth and flowering of Salvia splendens and Tagetes patula. Journal of the American Society for Horticultural Science, 132, 283-288.
[42] Oh, W., Cheon, I.H., Kim, K.S. and Runkle, E.S. (2009) Photosynthetic daily light integral influences flowering time and crop characteristics of Cyclamen persicum. HortScience, 44, 341-344.
[43] Garland, K.F., Burnett, S.E., Stack, L.B. and Zhang, D.L. (2010) Minimum daily light integral for growing high-quality coleus. HortTechnology, 20, 929-933.
[44] DeLucia, E.H., Shenoi, H.D., Naidu, S.L. and Day, T.A. (1991) Photosynthetic symmetry of sun and shade leaves of different orientations. Oecologia, 87, 51-57. doi:10.1007/BF00323779
[45] Terashima I. (1989) Productive structure of a leaf. In: Briggs, W.R., Ed., Plant Biology, Photo-synthesis, 8, Alan R. Liss Inc., New York.
[46] Poulson, M.E. and DeLueia, E.H. (1993) Photosynthetic and structural acclimation to light direction in vertical leaves of Silphium terebinthiaaceum. Oecologia, 95, 393-400. doi:10.1007/BF00320994
[47] Soares, A.S., Driscoll, S.P., Olmoe, E., Arrabaca, M.C. and Foyer, C.H. (2008) Adaxial/abaxial specification in the regulation of photosynthetic CO2 assimilation with respect to light orientation and growth with CO2 enrichment in Paspalum dilatatum leaves. New Phytologist, 177, 186-198.
[48] Wang, Y., Noguchi, K. and Terashima, I. (2008) Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L. Plant, Cell and Environment, 31, 1307-1316. doi:10.1111/j.1365-3040.2008.01843.x
[49] Boardman, N.K. (1977) Comparative photosynthesis of sun and shade plants. Annual Review of Plant Physiology, 28, 355-377. doi:10.1146/annurev.pp.28.060177.002035
[50] Bjorkman, O. (1981) Responses to different quantum flux densities. In: Lange, O.L., Nobel, P.S., Osmond, C.B. and Zeigler, H., Eds., Physiological Plant Ecology I., Ency in Plant Physiology, NS, 12A, Springer, New York. doi:10.1007/978-3-642-68090-8_4
[51] Schreiber, U., Fink, R. and Vidaver, W. (1977) Fluorescence induction in whole leaves: differentiation between the two teaf sides and adaptation to different light regimes. Planta, 133, 121-129. doi:10.1007/BF00391909
[52] Terashima, I. and Inoue, Y. (1984) Comparative photosynthetic properties of palisade tissue chloroplasts and spongy tissue chloroplasts of Camellia japonica L.: Functional adjustment of the photosynthetic apparatus to light environment within a leaf. Plant and Cell Physiology, 25, 555-563.
[53] Terashima, I. and Takenaka, A. (1986) Organization of photosynthetic system of dorsiventral leaves as adapted to the irradiation from the adaxial side. In: Marcell, R., Clijsters, H. and Van Poucke, M., Eds., Biological Control of Photosynthesis. Martinus Nijhoff, Dordrecht. doi:10.1007/978-94-009-4384-1_20
[54] Terashima, I. (1986) Dorsiventrality in photosynthetic light response curves of a leaf. Journal of Experimental Botany, 37, 399-405. doi:10.1093/jxb/37.3.399
[55] Wang, Y., Noguchi, K. and Terashima, I. (2011) Photosynthesis-dependent and -independent responses of stomata to blue, red and green monochromatic light: Differences between the normally oriented and inverted leaves of sunflower. Plant and Cell Physiology, 52, 479-489. doi:10.1093/pcp/pcr005
[56] Hovi, T., N?kkil?, J. and Tahvo-nen, R. (2004) Interlighting improves production of year-round cucumber. Scientia Horticulturae, 102, 283-294. doi:10.1016/j.scienta.2004.04.003
[57] Trouwborst, G., Oosterkamp, J., Hogewoning, S.W., Harbinson, J. and van Ieperen, W. (2010) The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Physiologia Plantarum, 138, 289-300. doi:10.1111/j.1399-3054.2009.01333.x

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.