Hydrogeophysical Parameters Estimation for Aquifer Characterisation in Hard Rock Environment: A Case Study from Yaounde, Cameroon


Detailed local geological and hydrogeophysical investigations were carried out for the aquifer in Yaoundé, Cameroon to delineate the architecture of different subsurface geological horizons using lithologs and generated vertical electrical sounding (VES) data. An attempt has also been made to estimate aquifer transmissivity from resistivity data. The transmissivity of the uncon?ned aquifer was computed by determining the Dar-Zarrouk parameters (longitudinal unit conductance and transverse unit resistance) and were compared with the actual field transmissivity. The results showed a direct relation between aquifer transmissivity and transverse resistance. The relationship established has therefore, been generalized in the study area in order to evaluate hydraulic conductivity and transmissivity at all the points where geoelectrical measurements have been carried out. This generalization allows one to derive maps of the product Kσ and transmissivity in the study area based on geoelectrical measurements. These maps are important in future modelling processes oriented towards better exploitation of the aquifers.

Share and Cite:

W. Teikeu, P. Njandjock, D. Bisso, Q. Atangana and J. Nlomgan, "Hydrogeophysical Parameters Estimation for Aquifer Characterisation in Hard Rock Environment: A Case Study from Yaounde, Cameroon," Journal of Water Resource and Protection, Vol. 4 No. 11, 2012, pp. 944-953. doi: 10.4236/jwarp.2012.411110.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. F. Schwartz and H. Zhang, “Fundamentals of Groundwater,” John Wiley Press, New York, 2003.
[2] L. Hamill and F. G. Bell, “Groundwater Resources Development,” Butterworths, London, 1986.
[3] J. Asfahani, “Neogene Aquifer Properties Specified through the Interpretation of Electrical Sounding Data, Salamiyeh Region, Central Syria,” Hydrological Processes, Vol. 21, 2007, pp. 2934-2943. doi:10.1002/hyp.6510
[4] S. Scarascia, “Contributions of Geophysical Methods to the Management of Water Resources,” Geoexploration, Vol. 14, 1976, pp. 265-266. doi:10.1016/0016-7142(76)90026-0
[5] E. W. Kelly. “Geoelectric Sounding for Estimating Aquifer Hydraulic Conductivity,” Ground Water, Vol. 15, No. 6, 1977, pp. 420-424. doi:10.1111/j.1745-6584.1977.tb03189.x
[6] S. Niwas and C. D. Singhal, “Estimation of Aquifer Transmissivity from Dar-Zarrouk Parameters in Porous Media,” Journal of Hydrology, Vol. 50, 1981, pp. 393-399. doi:10.1016/0022-1694(81)90082-2
[7] S. Niwas and C. D. Singhal, “Aquifer Transmissivity of Porous Media from Resistivity Data,” Journal of Hydrology, Vol. 82, 1985, pp. 143-153. doi:10.1016/0022-1694(85)90050-2
[8] O. Mazá?, E. W. Kelly and I. Landa, “A Hydrogeophysical Model for Relation between Electrical and Hydraulic Properties of Aquifers,” Journal of Hydrology, Vol. 79, 1985, pp. 1-19. doi:10.1016/0022-1694(85)90178-7
[9] E. Y. Abdelhady, E. Morsy and M. S. Hanafy, “Geoelectric Resistivity Sounding for Groundwater Evaluation: Two Field Examples,” Egyptian Geophysicist Society Journal, Vol. 2, 2004, pp. 61-68.
[10] H. Mvondo, J. W. S. Den Brok and J. M. Ondoa, “Evidence for Symmetric Extension and Exhumation of Yaounde Nappe (Pan-African Fold Belt, Cameroon),” Journal of African Earth Sciences, Vol. 3, No. 6, 2003, pp. 215-231. doi:10.1016/S0899-5362(03)00017-4
[11] G. E. Ekodeck and B. V. K. Kabayene, “L’altérologie Normative et ses Applications: Une Expression Parti- culière de la Pétrologie des Roches Aluminosilicatées du Point de vue de Leur Evolution Supergène,” Presses Universitaires de Yaoundé, Tome 2, 2002, pp. 225-231.
[12] T. Ngnotué, J. P. Nzenti, P. Barbey and F. M. Tchoua, “The Ntui-Betamba High-Grade Gneisses: A Nordward Extension of the Pan-African Yaounde Gneisses in Cameroon,” Journal of African Earth Sciences, Vol. 3 No. 1, 2000, pp. 369-381. doi:10.1016/S0899-5362(00)00094-4
[13] W. A. Teikeu, P. N. Njandjock, T. Ndougsa-Mbarga and T. C. Tabod, “Geoelectric Investigation for Groundwater Exploration in Yaoundé Area, Cameroon,” International Journal of Geosciences, Vol. 3, No. 3, 2012, pp. 640-649. doi:10.4236/ijg.2012.33064
[14] H. B. D. Tchapnga, E. Tanawa, E. Temgoua, J. Siakeu and B. N. Massana, “Mode de Circulation, Mécanismes de Recharge et Temps Relatifs de Séjour des Eaux des Nappes Souterraines des Altérites du Milieu Cristallin: Cas du Bassin Versant de L’Anga’a, Yaoundé, Camer- oun,” Presses Universitaires de Yaoundé, 1999, pp. 117-126.
[15] M. Pirttij?rvi, “Joint Interpretation of Electromagnetic and Geoelectrical Soundings Using 1-D Layered Earth Model, User’s Guide to Version 1.3,” Oulu, 2009, 48 p.
[16] P. S. Neumann, P. G. Walter, W. H. Bently, J. J. Ward and D. D. Gonzales, “Determination of Horizontal Anisotropy with Three Wells,” Groundwater, Vol. 22, No. 1, 1984, pp. 66-72. doi:10.1111/j.1745-6584.1984.tb01477.x
[17] A. A. R. Zohdy, P. G. Eaton and R. D. Mabey, “Application of Surface Geophysics to Groundwater Investigations,” US Geological Survey Technology and Water Resources Investigation, Book 2, 1974.
[18] E. W. Kelly and F. P. Reiter, “In?uence of Anisotropy on Relation between Aquifer Hydraulic and Electrical Properties,” Journal of Hydrology, Vol. 74, 1984, pp. 311-321. doi:10.1016/0022-1694(84)90021-0
[19] G. C. de Ribes and M. Aubague, “Carte Géologique de Réconnaissance au 1/500,000, Notice Explicative sur la Feuille Yaoundé-Est,” Direction des Mines et de la Géologie, Yaoundé, Cameroon, Imprimerie Rédon, Paris, 1956.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.