In Vivo Antioxidant Activity of Fucoxanthin on Obese/Diabetes KK-Ay Mice


Dietary intake of 0.1% fucoxanthin significantly reduced lipid hydroperoxide levels of liver and abdominal white adipose tissue (WAT) of obese/diabetes KK-Ay mice. The fucoxanthin supplementation also significantly reduced blood glucose level and hepatic lipid contents of the mice. Oxidative stress is known to be induced in hyperglycemia and high fat conditions. Therefore, in vivo antioxidant activity of fucoxanthin found in the present study could be attributed to its anti-diabetic effect and its decreasing effect on hepatic lipids. On the other hand, little effect of fucoxanthin on lipid hydroperoxide levels was found in normal ICR mice. Although the content of fucoxanthin metabolites in the abdominal WAT of KK-Ay mice was about 50 times higher that in the liver, there was little difference in its In Vivo antioxidant activity between in the liver and in the abdominal WAT. These results suggest that well-known ability of fucoxanthin to scavenge active oxygen species and/or free radicals would not be a main reason to explain its In Vivo antioxidant activity.

Share and Cite:

S. Iwasaki, M. Widjaja-Adhi, A. Koide, T. Kaga, S. Nakano, F. Beppu, M. Hosokawa and K. Miyashita, "In Vivo Antioxidant Activity of Fucoxanthin on Obese/Diabetes KK-Ay Mice," Food and Nutrition Sciences, Vol. 3 No. 11, 2012, pp. 1491-1499. doi: 10.4236/fns.2012.311194.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Nishino, “Cancer Prevention by Carotenoids,” Macroeconomic Reports, Vol. 402, No. 1-2, 1998, pp. 159-163. doi:10.1016/S0027-5107(97)00293-5
[2] M. K. W. A. Airanthi, N. Sasaki, S. Iwasaki, N. Baba, M. Abe, M. Hosokawa and K. Miyashita, “Effect of Brown Seaweed Lipids on Fatty Acid Composition and Lipid Hydroperoxide Levels of Mouse Liver,” Journal of Agricultural and Food Chemistry, Vol. 59, No. 8, 2011, pp. 4156-4163. doi:10.1021/jf104643b
[3] H. S. Kang, H. Y. Chung, J. Y. Kim, B. W. Son, H. A. Jung and J. S. Choi, “Inhibitory Phlorotannins from the Edible Brown Alga Ecklonia stolonifera on Total Reactive Oxygen Species (ROS) Generation,” Archives of Pharmacal Research, Vol. 27, No. 2, 2004, pp. 194-198. doi:10.1007/BF02980106
[4] M. Nakai, N. Kageyama, K. Nakahara and W. Miki, “Phlorotannins as Radical Scavengers from the Extract of Sargassum ringgoldianum,” Marine Biotechnology, Vol. 8, No. 4, 2009, pp. 409-414. doi:10.1007/s10126-005-6168-9
[5] T. Shibata, K. Ishimaru, S. Kawaguchi, H. Yoshikawa and Y. Hama, “Antioxidant Activities of Phlorotannins Isolated from Japanese Laminariaceae,” Journal of Applied Phycology, Vo. 20, No. 5, 2008, pp. 705-711. doi:10.1007/s10811-007-9254-8
[6] Y. Zou, Z. J. Qian, Y. Li, M. M. Kim, S. H. Lee and S. K. Kim, “Antioxidant Effects of Phlorotannins Isolated from Ishige Okamurae in Free Radical Mediated Oxidative Systems,” Journal of Agricultural and Food Chemistry, Vol. 56, No. 16, 2008, pp. 7001-7009. doi:10.1021/jf801133h
[7] T. Tsukui, K. Konno, M. Hosokawa, H. Maeda, T. Sashima and K. Miyashita, “Fucoxanthin and Fucoxanthinol Enhance the Amount of Docosahexaenoic Acid in the Liver of KKAy Obese/Diabetic Mice,” Journal of Agricultural and Food Chemistry, Vol. 55, No. 13, 2007, pp. 5025-5029. doi:10.1021/jf070110q
[8] M. Terasaki, A. Hirose, B. Narayan, Y. Baba, C. Kawagoe, H. Yasui, N. Saga, M. Hosokawa and K. Miyashita, “Evaluation of Recoverable Functional Lipid Components with Special Reference to Fucoxanthin and Fucosterol Contents of Several Brown Seaweeds of Japan,” Journal of Phycology, Vol. 45, No. 4, 2009, pp. 974-980. doi:10.1111/j.1529-8817.2009.00706.x
[9] P. G. Reeves, F. H. Nielsen and G. C. Fahey, “AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet,” Journal of Phycology, Vol. 123, No. 11, 1993, pp. 1939-1951.
[10] O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, “Protein Measurement with the Folin Phenol Reagent,” The Journal of Biological Chemistry, Vol. 193, No. 1, 1951, pp. 265-275.
[11] J. Folch, M. Lees and G. H. S. Stanley, “A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues,” The Journal of Biological Chemistry, Vol. 226, No. 1, 1957, pp. 497-509.
[12] K. Akasaka, I. Sasaki, H. Ohrui and H. Meguro, “Simple Fluorometry of Hydroperoxides in Oils and Foods,” Bioscience Biotechnology & Biochemistry, Vol. 56, No. 4, 1992, pp. 605-607. doi:10.1271/bbb.56.605
[13] H. Maeda, M. Hosokawa, T. Sashima, K. Funayama and K. Myashita, “Fucoxanthin from Edible Seaweed, Undaria pinnatifida, Shows Antiobesity Effect through UCP1 Expression in White Adipose Tissues,” Biochemical and Biophysical Research Communications, Vol. 332, No. 2, 2005, pp. 392-397. doi:10.1016/j.bbrc.2005.05.002
[14] J. Suto, S. Matsuura, K. Imamura, H. Yamanaka and K. Sekikawa, “Genetic Analysis of Non-Insulin-Dependent Diabetes Mellitus in KK and KK-Ay Mice,” European Journal of Endocrinology, Vol. 139, No. 6, 1998, pp. 654-661. doi:10.1530/eje.0.1390654
[15] H. K. Vincent and A. G. Taylor, “Biomarkers and Potential Mechanisms of Obesity-Induced Oxidant Stress in Humans,” International Journal of Obesity, Vol. 30, No. 3, 2006, pp. 400-418. doi:10.1038/sj.ijo.0803177
[16] H. K. Vincent, K. E. Innes and K. R. Vincent, “Oxidative Stress and Potential Interventions to Reduce Oxidative Stress in Overweight and Obesity,” Diabetes, Obesity and Metabolism, Vol. 9, No. 6, 2007, pp. 813-839. doi:10.1111/j.1463-1326.2007.00692.x
[17] A. Andrikopoulos, “Obesity and Type 2 Diabetes: Slow Down!—Can Metabolic Deceleration Protect the Islet Beta Cell from Excess Nutrient-Induced Damage?” Molecular and Cellular Endocrinology, Vol. 316, No. 2, 2010, pp. 140-146. doi:10.1016/j.mce.2009.09.031
[18] I. Grattagliano, V. O. Palmieri, P. Portincasa, A. Moschetta and G. Palasciano, “Oxidative Stress-Induced Risk Factors Associated with the Metabolic Syndrome: A Unifying Hypothesis,” The Journal of Nutritional Biochemistry, Vol. 19, No. 8, 2008, pp. 491-504. doi:10.1016/j.jnutbio.2007.06.011
[19] H. Yang, X. Jin, C. W. K. Lam and S.-K. Yan, “Oxidative Stress and Diabetes Mellitus,” Clinical Chemistry and Laboratory Medicine, Vol. 49, No. 11, 2011, pp. 1773-1782. doi:10.1515/cclm.2011.250
[20] Y.-C. Shi and T.-M. Pan, “Red Mold, Diabetes, and Oxidative Stress: A Review,” Applied Microbiology and Biotechnology, Vol. 94, No. 1, 2012, pp. 47-55. doi:10.1007/s00253-012-3957-8
[21] M. Hosokawa, T. Miyashita, S. Nishikawa, S. Emi, T. Tsukui, F. Beppu, T. Okada and K. Miyashita, “Fucoxanthin Regulates Adipocytokine mRNA Expression in White Adipose Tissue of Diabetic/Obese KK-Ay Mice,” Archives of Biochemistry and Biophysics, Vol. 504, No. 1, 2010, pp. 17-25. doi:10.1016/
[22] H. Maeda, M. Hosokawa, T. Sashima and K. Miyashita, “Ditary Combination of Fucoxanthin and Fish Oil Attenuates the Weight Gain of White Adipose Tissue and Decrease Blood Glucose in Obese/Diabetic KK-Ay Mice,” Agricultural and Biological Chemistry, Vol. 55, No. 19, 2007, pp. 7701-7706. doi:10.1021/jf071569n
[23] H. Maeda, M. Hosokawa, T. Sashima, K. MurakamiFunayama and K. Miyashita, “Anti-Obesity and AntiDiabetic Effects of Fucoxanthin on Diet-Induced Obesity Conditions in a Murine Model,” Molecular Medicine Reports, Vol. 2, No. 6, 2009, pp. 897-902. doi:10.3892/mmr_00000189
[24] S. Nishikawa, M. Hosokawa and K. Miyashita, “Fucoxanthin Promotes Translocation and Induction of Glucose Transporter 4 in Skeletal Muscles of Diabetic/Obese KK-Ay Mice,” Phytomedicine, Vol. 19, No. 6, 2012, pp. 389-394. doi:10.1016/j.phymed.2011.11.001
[25] Y. Deng and P. E. Scherer, “Adipokines as Novel Biomarkers and Regulators of the Metabolic Syndrome,” Annals of the New York Academy of Sciences, Vol. 1212, 2010, pp. E1-E19. doi:10.1111/j.1749-6632.2010.05875.x
[26] F. Farinati, M. Piciocchi, E. Lavezzo, M. Bortolami and R. Cardin, “Oxidative Stress and Inducible Nitric Oxide Synthase Induction in Carcinogenesis,” Digestive Diseases, Vol. 28, No. 4-5, 2010, pp. 579-584. doi:10.1159/000320052
[27] S. K. Pathak, R. A. Sharma, W. P. Steward, J. K. Mellon, T. R. L. Griffiths and A. J. Gescher, “Oxidative Stress and Cyclooxygenase Activity in Prostate Carcinogenesis: Targets for Chemopreventive Strategies,” European Journal of Cancer, Vol. 41, No. 1, 2005, pp. 61-70. doi:10.1016/j.ejca.2004.09.028
[28] K. Uchida, “A Lipid-Derived Endogenous Inducer of COX-2: A Bridge between Inflammation and Oxidative Stress,” Molecular Cell, Vol. 25, No. 3, 2008, pp. 347-351.
[29] K. Miyashita, S. Nishikawa, F. Beppu, T. Tsukui, M. Abe and M. Hosokawa, “Allenic Carotenoid, Fucoxanthin, as a Novel Marine Nutraceutical from Brown Seaweed,” Journal of Agricultural and Food Chemistry, Vol. 91, No. 7, 2011, pp. 1166-1174. doi:10.1002/jsfa.4353
[30] M. Abidov, Z. Ramazanov, R. Seifulla and S. Grachev, “The Effects of Xanthigen? in the Weight Management of Obese Premenopausal Women with Non-Alcoholic Fatty Liver Disease and Normal Liver Fat,” Diabetes, Obesity and Metabolism, Vol. 12, No. 1, 2010, pp. 72-81. doi:10.1111/j.1463-1326.2009.01132.x
[31] M.-N. Woo, S.-M. Jeon, H.-J. Kim, M.-K. Lee, S.-K. Shin, Y. C. Shin, Y.-B. Park and M.-S. Choi, “Fucoxanthin Supplementation Improves Plasma and Hepatic Lipid Metabolism and Blood Glucose Concentration in High-Fat Fed C57BL/6N Mice,” Chemico-Biological Interactions, Vol. 186, No. 3, 2010, pp. 316-322. doi:10.1016/j.cbi.2010.05.006
[32] K. Miyashita, “Function of Marine Carotenoids,” Forum of Nutrition, Vol. 61, 2009, pp. 136-146. doi:10.1159/000212746
[33] T. Nomura, M. Kikuchi, A. Kubodera and Y. Kawakami, “Proton-Donative Antioxidant Activity of Fucoxanthin with 1,1-Diphenyl-2-Picrylhydrazyl (DPPH),” Biochemistry & Molecular Biology International, Vol. 42, No. 2, 1997, pp. 361-370.
[34] X. Yan, Y. Chuda, M. Suzuki and T. Nagata, “Fucoxanthin as the Major Antioxidant in Hijikia fusiformis, a Common Edible Seaweed,” Bioscience Biotechnology & Biochemistry, Vol. 63, No. 3, 1999, pp. 605-607. doi:10.1271/bbb.63.605
[35] N. M. Sachindra, E. Sato, H. Maeda, M. Hosokawa, Y. Niwano, M. Kohno and K. Miyashita, “Radical Scavenging and Singlet Oxygen Quenching Activity of Marine Carotenoid Fucoxanthin and Its Metabolites,” Journal of Agricultural and Food Chemistry, Vol. 55, No. 21, 2007, pp. 8516-8522. doi:10.1021/jf071848a
[36] R. Edge, D. J. McGarvey and T. G. Truscott, “The Carotenoids as Anti-Oxidants: A Review,” Journal of Photochemistry and Photobiology B, Vol. 41, No. 3, 1997, pp. 189-200. doi:10.1016/S1011-1344(97)00092-4
[37] H. Sies, “Total Antioxidant Capacity: Appraisal of a Concept,” Journal of Nutrition, Vol. 137, No. 6, 2007, pp. 1493-1495.
[38] L. Ma and X.-M. Lin, “Effects of Lutein and Zeaxanthin on Aspects of Eye Health,” Journal of the Science of Food and Agriculture, Vol. 90, No. 1, 2010, pp. 2-12. doi:10.1002/jsfa.3785
[39] J. P. Fredric, G. W. David and L. C. Charles, “Astaxanthin: A Novel Potential Treatment for Oxidative Stress and Inflammation in Cardiovascular Disease,” American Journal of Cardiology, Vol. 101, No. 10, 2008, pp. 58D68D.
[40] R. G. Fassett and J. S. Coombes, “Astaxanthin, Oxidative Stress, Inflammation and Cardiovascular Disease,” Future Cardiology, Vol. 5, No. 4, 2009, pp. 333-342. doi:10.2217/fca.09.19
[41] J.-P. Yuan, J. Peng, K. Yin and J.-H. Wang, “Potential Health-Promoting Effects of Astaxanthin: A High-Value Carotenoid Mostly from Microalgae,” Molecular Nutrition & Food Research, Vol. 55, No. 1, 2011, pp. 150-165. doi:10.1002/mnfr.201000414
[42] J. W. Erdman Jr., N. A. Ford and B. L. Lindshield, “Are the Health Attributes of Lycopene Related to Its Antioxidant Function?” Archives of Biochemistry and Biophysics, Vol. 483, No. 2, 2009, pp. 229-235. doi:10.1016/

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.