The Potential Role of Quercus Infectoria Gall Extract on Osteoblast Function and Bone Metabolism

Abstract

The galls of the Quercus infectoria (QI) tree are traditionally believed to have great medicinal value. Pharmacologically the galls are claimed to have various biological activities such as astringent effect, antidiabetic, antitremorine, local anaesthetic, antipyretic, anti-inflammatory, antibacterial, antiviral and many more. These pharmacological activities of gall extracts were reported to be due to its excellent antioxidant activity with phytochemicals constituents of phenolic and flavanoid compounds. The phenolic compounds or polyphenols can act on bone metabolism by modulating osteoblast proliferation, differentiation and mineralization, as well as osteoclastogenesis. In addition, elemental and physico-chemical analysis indicated the presence of important minerals in QI, such as calcium, magnesium, phosphorus, oxygen, potassium, aluminium, carbon, zinc, iron, manganese, nickel and silica. The current review will be focusing on the potential bone health benefits of the well-known traditional herbal medicine, QI or locally known as the “manjakani”.

Share and Cite:

H. Hapidin, H. Abdullah and I. Nirwana Soelaiman, "The Potential Role of Quercus Infectoria Gall Extract on Osteoblast Function and Bone Metabolism," Open Journal of Endocrine and Metabolic Diseases, Vol. 2 No. 4, 2012, pp. 82-88. doi: 10.4236/ojemd.2012.24013.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. G. Raisz, “Pathogenesis of Osteoporosis: Concepts, Conflicts, and Prospects,” Journal of Clinical Investigation, Vol. 115, No. 12, 2005, pp. 3318-3325. doi:10.1172/JCI27071
[2] M. P. Caulfield and R. E. Reitz, “Biochemical Markers of Bone Turnover and Their Utility in Osteoporosis,” Medical Laboratory Observer (MLO), Vol. 36, No. 4, 2004, pp. 34-37.
[3] “Fractures Neck of Femur,” Royale Collage of Physicians, London, 1989.
[4] C. Cooper, G. Campion and L. J. Melton, “Hip Fractures in the Elderly: A World-Wide Projection,” Osteoporosis International, Vol. 2, No. 6, 1992, pp. 285-289. doi:10.1007/BF01623184
[5] L. J. Melton, “Epidemiology of Fractures,” In: L. J. Melton, Ed., Osteoporosis: Etiology, Diagnosis, and Management, Lippincott-Raven, Philadelphia, 1995, pp. 225-247.
[6] R. Eastell, I. T. Boyle, J. Compston, et al., “Management of Male Osteoporosis: Report of the UK Consensus Group,” Quarterly Journal of Medicine, Vol. 91, No. 2, 1998, pp. 71-92. doi:10.1093/qjmed/91.2.71
[7] O. Johnell and J. A. Kanis, “An Estimate of the Worldwide Prevalence and Disability Associated with Osteoporotic Fractures,” Osteoporosis International, Vol. 17, No. 12, 2006, pp. 1726-1733. doi:10.1007/s00198-006-0172-4
[8] E. Lau, P. Suriyamongpaisal, J. Lee, et al., “Risk Factors for Hip Fracture in Asian Men and Women: The Asian Osteoporosis Study,” Journal of Bone and Mineral Research, Vol. 16, No. 3, 2001, pp. 572-580. doi:10.1359/jbmr.2001.16.3.572
[9] P. S. Lim, F. B. Ong, N. Adeeb, et al., “Bone Health in Urban Midlife Malaysian Women: Risk Factors and Prevention,” Osteoporosis International, Vol. 16, No. 12, 2005, pp. 2069-2079. doi:10.1007/s00198-005-2003-4
[10] S. R. Joshi and D. V. Paramar, “Osteoporosis,” The Indian Practice, Vol. 50, 1997, pp. 254-268.
[11] M. Wheeler, “Osteoporosis,” Medical Clinics of North America, Vol. 60, No. 6, 1976, pp. 1213-1224.
[12] S. K. Mitra, M. V. Venkataranganna, S. Gopumadhava, et al., “The Beneficial Effect of OST-6 (OsteoCare, a Herbomineral Formulation in Experimental Osteoporosis,” Phytomedicine, Vol. 8, No. 3, 2001, pp. 195-201. doi:10.1078/0944-7113-00034
[13] C. P. Khare, “Quercus,” Indian Herbal Remedies: Rational Western Therapy, Ayurvedic and Other Traditional Usage, 2004, pp. 395-396.
[14] Z. Muhammad and A. M. Mustafa, “Traditional Malay Medicine Plants,” Penerbit Fajar Bakti Sdn. Bhd, Kuala Lumpur, 1994.
[15] A. V. S. Kottakkal, “Indian Medicinal Plants,” Orient Longman Ltd., Andhra Pradesh, 1995.
[16] S. K. Bhattacharjee, “Handbook of Medicinal Plants,” Pointer Publishers, Jaipur, 2001.
[17] L. K. Soon, E. Hasni, K. S. Law, et al., “Ultrastructural Findings and Elemental Analysis of Quercus Infectoria Oliv,” Annals of Microscopy, Vol. 7, 2007, pp. 32-37.
[18] A. Vermani, Navneet, Prabhat and A. Chauhan, “Physico-Chemical Analysis of Ash of Some Medicinal Plants Growing in Uttarakhand, India,” Nature and Science, Vol. 8, No. 6, 2010, pp. 88-91.
[19] S. A. New, “Bone Health: The Role of Micronutrients,” British Medical Bulletin, Vol. 55, No. 3, 1999, pp. 619-633. doi:10.1258/0007142991902501
[20] J. Z. Ilich and J. E. Kerstetter, “Nutrition in Bone Health Revisited: A Story Beyond Calcium,” Journal of the American Collage of Nutrition, Vol. 19, No. 6, 2000, pp. 715-737.
[21] R. P. Heaney, “Bone Health,” The American Journal of Clinical Nutrition, Vol. 85, 2007, pp. 300S-303S.
[22] E. Lau, S. Donnan, D. J. Barker and C. Cooper, “Physical Activity and Calcium Intake in Fracture of the Proximal Femur in Hong Kong,” British Medical Journal, Vol. 297, No. 6661, 1988, pp. 1441-1443. doi:10.1136/bmj.297.6661.1441
[23] O. Johnell, B. Gullberg, J. A. Kanis, et al., “Risk Factors for Hip Fracture in European Women: The MEDOS Study,” Journal of Bone and Mineral Research, Vol. 10, No. 11, 1995, pp. 1802-1815. doi:10.1002/jbmr.5650101125
[24] J. Kanis, O. Johnell, B. Gullaberg, et al., “Risk Factors of Hip Fracture in Men from Southern Europe: The MEDOS Study. Mediterranean Osteoporosis Study,” Osteoporosis International, Vol. 9, No. 1, 1999, pp. 45-54. doi:10.1007/s001980050115
[25] “American Society for Bone and Mineral Research,” In: M. Favus, Ed., Primer of the Metabolic Bone Diseases and Disorders of Mineral Metabolism, Lippincott Williams & Wilkins, Philadelphia, 1999, pp. 257-284.
[26] A. Prentice, “Diet, Nutrition and the Prevention of Osteoporosis,” Public Health Nutrition, Vol. 7, No. 1A, 2004, pp. 227-243. doi:10.1079/PHN2003590
[27] A. Gur, L. Colpan, K. Nas, R. Cevik, et al., “The Role of Trace Minerals in the Pathogenesis of Postmenopausal Osteoporosis and a New Effect of Calcitonin,” Journal of Bone and Mineral Metabolism, Vol. 20, No. 1, 2002, pp. 39-43. doi:10.1007/s774-002-8445-y
[28] M. Marangella, M. D. Stefano, S. Casalis, S. Berutti, et al., “Effects of Potassium Citrate Supplementation on Bone Metabolism,” Calcified Tissue International, Vol. 74, No. 4, 2004, pp. 330-335. doi:10.1007/s00223-003-0091-8
[29] J. K. Hwang, T. W. Kong, N. I. Baek and Y. R. Pyun, “α-Glycosidase Inhibitory Activity of Hexagalloyl Glucose from the Galls of Quercus Infectoria,” Planta Medica, Vol. 66, No. 3, 2000, pp. 273-274. doi:10.1055/s-2000-8569
[30] M. S. Dar, M. Ikram and T. Fakouhi, “Pharmacology of Quercus infectoria oliv,” Journal of Pharmaceutical Sciences, Vol. 46, No. 6, 1976, pp. 1791-1794. doi:10.1002/jps.2600651224
[31] G. Hussein, H. Miyashiro, N. Nakamura, M. Hattori, et al., “Inhibitory Effects of Sudanese Medicinal Plant Extracts on Hepatitis C Virus Protease,” Phytotherapy Research, Vol. 14, No. 7, 2000, pp. 510-516. doi:10.1002/1099-1573(200011)14:7<510::AID-PTR646>3.0.CO;2-B
[32] S. Fatima, A. H. A. Farooqi, R. Kumar, T. R. S. Kumar TRS and S. P. S. Khanuja, “Antibacterial Activity Possessed by Medicinal Plants Used in Tooth Powders,” Journal of Medicinal and Aromatic Plant Sciences, Vol. 22, No. 4a, 2001, pp. 187-189.
[33] M. Digraki, M. H. Alma, A. Ilcim and S. Sen, “Antibacterial and Antifungal Effects of Various Commercial Plant Extracts,” Pharmaceutical Biology, Vol. 37, No. 3, 1999, pp. 216-220. doi:10.1076/phbi.37.3.216.6307
[34] A. Redwane, H. B. Lazrek, S. Bouallam, M. Markouk, et al., “Larvicidal Activity of Extracts from Quercus lusitania var. infectoria Galls (Oliv.),” Journal of Ethnopharmacology, Vol. 79, No. 2, 2002, pp. 261-263. doi:10.1016/S0378-8741(01)00390-7
[35] S. Voravuthikunchai, A. Lortheeanuwat, W. Jeeju, T. Sririrak, et al., “Effective Medicinal Plants against Enterohaemorrhagic Escherichia coli O 157:H7,” Journal of Ethnopharmacology, Vol. 94, No. 1, 2004, pp. 49-50. doi:10.1016/j.jep.2004.03.036
[36] G. Kaur, H. Hamidi, A. Ali, M. S. Alam and M. Athar, “Anti-Inflammatory Evaluation of Alcoholic Extract of Galls of Quercus infectoria,” Journal Ethnopharmacology, Vol. 90, No. 2-3, 2004, pp. 285-292. doi:10.1016/j.jep.2003.10.009
[37] S. P. Umachigi, K. N. Jayaveera, C. K. Ashok Kumar, et al., “Studied on Wound Healing Properties of Quercus infectoria,” Tropical Journal of Pharmaceutical Research, Vol. 7, No. 1, 2008a, pp. 913-919.
[38] S. P. Umachigi, K. N. Jayaveera, C. K. Ashok Kumar and G. S. Kumar, “Antioxidant Potential of Galls of Quercus infectoria,” The Internet Journal of Pharmacology, Vol. 5, No. 2, 2008b.
[39] S. Rohana, S. Vimala, A. Abdul Rashih and A. Mohd IIham, “Skin Whitening and Antioxidant Properties of Quercus Infectoria Galls,” Proceedings of the Seminar on Medicinal Plant, Forest Research Institute Malaysia (FRIM), Selangor, 20-21 July 2004, pp. 188-191.
[40] G. Kaur, M. Athar and M. S. Alam, “Quercus infectoria Galls Possess Antioxidant Activity and Abrogates Oxidative Stress-Induced Functional Alterations in Murine Macrophages,” Chemico-Biological Interactions, Vol. 171, No. 3, 2008, pp. 272-282. doi:10.1016/j.cbi.2007.10.002
[41] J. Bruneton, “Pharmacognosy: Phyochemistry, Medicinal Plants,” 2nd Edition, Lavoisier Pub., Hampshire, 1999.
[42] A. Scalbert, C. Manach, C. Morand, et al., “Dietary Polyphenols and the Prevention of Diseases,” Critical Review in Food Science and Nutrition, Vol. 45, No. 4, 2005, pp. 287-306. doi:10.1080/1040869059096
[43] Z. Luthar, “Polyphenol Classification and Tannin Content of Buckwheat Seeds (Fagopyrum esculentum Moench),” Fagopyrum, Vol. 12, 1992, pp. 36-42.
[44] V. Habauzit and M. N. Horcajada, “Phenolic Phytochemicals and Bone,” Phytochemistry Reviews, Vol. 7, No. 2, 2008, pp. 313-344.
[45] A. Trzeciakiewicz, V. Habauzit and M. N. Hocajada, “When Nutrition Interacts with Osteoblast Function: Molecular Mechanisms of Polyphenols,” Nutrition Research Reviews, Vol. 22, No. 1, 2009, pp. 68-81. doi:10.1017/S095442240926402X
[46] J. E. Aubin, “Mesenchymal stem cells and osteoblast differentiation,” In: J. P. Bilezikian, L. G. Raisz and T. J. Martin, Eds., Principals of Bone Biology, Academic Press, San Diego, 2008, pp. 85-107. doi:10.1016/B978-0-12-373884-4.00026-4
[47] P. J. Marie, “Transcription Factors Controlling Osteoblastogenesis,” Archives of Biochemistry and Biophysics, Vol. 473, No. 2, 2008, pp. 98-105. doi:10.1016/j.abb.2008.02.030
[48] G. J. Strewler, “Local and Systemic Control of the Osteoblast,” Journal of Clinical Investigation, Vol. 107, No. 3, 2001, pp. 271-272. doi:10.1172/JCI11777
[49] D. J. Baylink, R. D. Finkelman and S. Mohan, “Growth Factors to Stimulate Bone Formation,” Journal of Bone and Mineral Research, Vol. 8, No. S2, 1993, pp. S565-S572. doi:10.1002/jbmr.5650081326
[50] V. Krishnan, T. L. Moore, Y. L. Ma, L. M. Helvering, et al., “Parathyroid Hormone Bone Anabolic Action Requires Cbfa1/Runx2-Dependent Signaling,” Molecular Endocrinology, Vol. 17, No. 3, 2003, pp. 423-435. doi:10.1210/me.2002-0225
[51] T. Katagiri, Yamaguchi, A. Ikeda, T. Yoshiki, et al., “The Non-Osteogenic Mouse Pluripotent Cell Line, C3H10T1/2, Is Induced to Differentiate into Osteoblastic Cells by Recombinant Human Bone Morphogenetic Protein-2,” Biochemical and Biophysical Research Communications, Vol. 172, No. 1, 1990, pp. 295-299. doi:10.1016/S0006-291X(05)80208-6
[52] A. Yamaguchi, T. Katagiri, T. Ikeda, J. M. Wozney, et al., “Recombinant Human Bone Morphogenetic Protein-2 Stimulates Osteoblastic Maturation and Inhibits and Inhibits Myogenic Differentiation in vitro,” The Journal of Cell Biology, Vol. 113, No. 3, 1991, pp. 681-687. doi:10.1083/jcb.113.3.681
[53] T. K. Sampath, J. C. Maliakal, P. V. Hauschka, W. K. Jones, et al., “Recombinant Human Osteogenic Protein-1 (hOP-1) Induces New Bone Formation in vitro with a Specific Activity Comparable with Natural Bovine Osteogenic Protein and Stimulates Osteoblast Proliferation and Differentiation in vitro,” The Journal of Biological Chemistry, Vol. 267, No. 28, 1992, pp. 20352-20362.
[54] S. E. Gitelman, M. Kirk, E. H. Filvaroff, A. J. Kahn, et al., “Vgr-1/BMP-6 Induces Osteoblastic Differentiation of Pluripotential Mesenchymal Cells,” Cell Growth and Differentiation, Vol. 6, No. 7, 1995, pp. 827-836.
[55] G. S. Stein and J. B. Lian, “Molecular Mechanisms Mediating Proliferation Differentiation Interrelationships during Progressive Developmental of the Osteoblast Phenotype,” Endocrine Reviews, Vol. 14, No. 4, 1993, pp. 424-442.
[56] S. Marks and P. Odgren, “Structure and developmental of the skeleton,” In: J. P. Bilezikian, L. G. Raisz and G. A. Rodan, Eds., Principles of Bone Biology, Academic Press, San Diego, 2002, pp. 3-15.
[57] L. C. Hofbauer and A. E. Heufelder, “Role of Receptor Activator of Nuclear Factor Kappa-B Ligand and Osteoprotegerin in Bone Cell Biology,” Journal of Molecular Medicine, Vol. 79, No. 5-6, 2001, pp. 243-253. doi:10.1007/s001090100226
[58] J. Lian, G. Stein, E. Canalis, P. Gehron Robey and A. Boskey, “Bone formation: Osteoblast lineage cells, growth factors, matrix proteins and the mineralization process,” In: M. Favus, Ed., Primer on Metabolic Diseases and Disorders of Mineral Metabolism, Lippincott William & Wilkins, Philadelphia, 1999, pp. 14-29.
[59] A. M. Parfitt, “The Mechanism of Coupling: A Role for the Vasculature,” Bone, Vol. 26, No. 4, 2000, pp. 319-323. doi:10.1016/S8756-3282(00)80937-0
[60] A. M. Parfitt, “Osteonal and Hemi-Osteonal Remodeling: The Spatial and Temporal Framework for Signal Traffic in Adult Human Bone,” Journal of Cellular Biochemistry, Vol. 55, No. 3, 1994, pp. 273-286. doi:10.1002/jcb.240550303
[61] R. Baron, “Anatomy and Ultrastructural of Bone,” In: M. Favus, Ed., Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, Lippincott William & Wilkins, Philadelphia, 1999, pp. 3-10.
[62] D. Sommerfeldt and C. Rubin, “Biology of Bone and How It Orchestrates the Form and Function of the Skeleton,” European Spine Journal, Vol. 10, No. S2, 2001, pp. S86-S95. doi:10.1007/s005860100283
[63] V. Noe, S. Penuelas, R. M. Lamuela-Raventos, et al., “Epicatechin and a Cocoa Polyphenolic Extract Modulate Gene Expression in Human Caco-2 Cells,” Journal of Nutrition, Vol. 134, No. 10, 2004, pp. 2509-2516.
[64] C. H. Ko, S. C. Shen, H. Y. Lin, et al., “Flavanones Structure-Related Inhibition on TPA-Induced Tumor Promotion through Suppression of Extracellular Signal-Regulated Protein Kinases: Involvement of Prostaglandin E-2 in Anti-Promotive Process,” Journal of Cellular Physiology, Vol. 193, No. 1, 2002, pp. 93-102. doi:10.1002/jcp.10154
[65] J. O’Prey, J. Brown, J. Fleming, et al., “Effects of Dietary Flavonoids on Major Signal Transduction Pathways in Human Epithelial Cells,” Biochemical Pharmacology, Vol. 66, No. 11, 2003, pp. 2075-2088. doi:10.1016/j.bcp.2003.07.007
[66] R. Vittal, Z. E. Selvanayagam, Y. Sun, et al., “Gene Expression Changes Induced by Green Tea Polyphenol (2)-Epigallocatechin-3-Gallate in Human Bronchial Epithelial 21BES Cells Analyzed by DNA Microarray,” Molecular Cancer Therapeutics, Vol. 3, No. 9, 2004, pp. 1091-1099.
[67] S. Y. Bu, T. S. Hunt and B. J. Smith, “Dried Plum Polyphenols Attenuate the Detrimental Effects of TNF-a on Osteoblast Function Coincident with Up-Regulation of Runx2, Osterix and IGF-I,” The Journal of Nutritional Biochemistry, Vol. 20, No. 1, 2009, pp. 35-44. doi:10.1016/j.jnutbio.2007.11.012
[68] B. H. Arjmandi, D. A. Khalil, E. A. Lucas, et al., “Dried Plumps Improve Indices of Bone Formation in Postmenopausal Women,” Journal of Women’s Health Gender-Based Medicine, Vol. 11, No. 1, 2002, pp. 61-68. doi:10.1089/152460902753473471
[69] E. K. Park, M. S. Kim, S. H. Lee, et al., “Furosin, an Ellagitannin, Suppresses RANKL-Induced Osteoclast Differentiation and Function through Inhibition of MAP Kinase Activation and Actin Ring Formation,” Biochemical and Biophysical Research Communications, Vol. 325, No. 4, 2004, pp. 1472-1480. doi:10.1016/j.bbrc.2004.10.197
[70] N. Holzer, K. F. Braun, S. Ehnert, J. T. Egana, T. L. Schenck, A. Buchholz, et al., “Green Tea Protects Human Osteoblasts from Cigarette Smoke-Induced Injury: Possible Clinical Application,” Langenbecks Archives of Surgery, Vol. 397, No. 3, 2012, pp. 467-474. doi:10.1007/s00423-011-0882-8
[71] C. L. Shen, J. K. Yeh, J. J. Cao, O. L. Tatum, et al., “Green Tea Polyphenols Mitigate Bone Loss of Female Rats in a Chronic Inflammation-Induced Bone Loss Model,” Journal of Nutritional Biochemistry, Vol. 21, No. 10, 2010, pp. 968-974. doi:10.1016/j.jnutbio.2009.08.002

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.