Possible schemes of calculation modeling in a quantum computer

.
DOI: 10.4236/ns.2010.28114   PDF   HTML     5,777 Downloads   9,271 Views   Citations

Abstract

In the present work a possibility of computation modeling, which should be realized in a real quantum computer, is discussed. In this connection two models of a device, which work is determined by the structure and dynamics of real molecular systems are reported.

Share and Cite:

Voronov, V. (2010) Possible schemes of calculation modeling in a quantum computer. Natural Science, 2, 923-927. doi: 10.4236/ns.2010.28114.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Voronov, V.K. (2005) Possible approach to the solution of quantum computers problem. Quantum Computers & Computing, 5(1), 3-6.
[2] Voronov, V.K. (2006) NMR and the problem of quantum computer creation: New outlook. In: Susan Shannon, Ed., Trends in Quantum Computing Research, NOVA Publisher, New York, 73-90.
[3] Shor, P.W. (1994) Algorithms for computation: Discreta logarithms and factoring. Proceeding of the 35th Annual Symposium on the Foundation of Computer Science, Los Alamitos, CA, USA, 1994, 124-134.
[4] Jones, J.A. and Mosca, M.J. (1998) Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer. Journal of Chemical Physics, 109(5), 1648-1653.
[5] Chuang, I.L., Gershenfeld, N. and Kubinec, M. (1998) Experimental implementation of fast quantum searching. Physical Review Letters, 80(15), 3408-3411.
[6] Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H. and Chuang, I.L. (2002) Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature, 414, 883-887.
[7] Shklyaev, A.A. and Ichikawa, M. (2006) Germanium and silicon nanostructure fabrication using a scanning tunneling microscope tip. Uspekhi Physics Nauk, 176(9), 913-930.
[8] Kilin, S.Ya. (1999) Quantum information. Uspekhi Physics Nauk, 169(5), 507-526.
[9] Valiev, K.A. (2005) Quantum computers and quantum computing. Uspekhi Physics Nauk, 175(1), 3-39.
[10] Izyumov, Yu.A. and Kurmaev, è.Z. (2008) Strongly electron-correlated materials. Uspehi Physics Nauk, 178(1), 25-60.
[11] Ovcharenko, V., Fursova, E., Romanenko, G., Eremenko, I., Tretyakov, E. and Ikorski, V. (2006) Synthesis, structure and magnetic properties of (6-9)-Nuclear Ni(II) trimethylacetates and their heterospin complexes with nitroxides. Inorganic Chemistry, 45(14), 5338-5350.
[12] Kagan, M.Yu., Klaptsov, A.V., Brodskii, I.V., Kugel, K.I., Sboichakov, A.O. and Rakhmanov, A.L. (2003) Small scale phase separation and electron transport in manganites. Uspekhi Physics Nauk, 173(8), 877-883.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.