Evaluation of Eta Weather Forecast Model over Central Africa


The main goal of this work is to investigate the skills of Eta weather forecast model in forecasting precipitations, temperature and sea level pressure. The model domain extends from 6°W to 29°E and 6°S to 21°N. The model is run with a horizontal resolution of 48 km with 45 vertical levels and initial and boundary conditions were given by National Centers for Environmental Prediction (NCEP) 00UTC operational analysis. All the forecasts are for period of 48 hours. They were compared to the Tropical Rainfall Measuring Mission (TRMM) derived data for precipitations and NCEP/NCAR (National Center for Atmospheric Research) analysis for temperature and sea level pressure. The results show that Eta model predicts fairly good 2 meters temperature and the sea level pressure. Spatial distributions of precipitations are not well simulated by the model.

Share and Cite:

R. Steve Tanessong, D. A. Vondou, P. Moudi Igri and F. Mkankam Kamga, "Evaluation of Eta Weather Forecast Model over Central Africa," Atmospheric and Climate Sciences, Vol. 2 No. 4, 2012, pp. 532-537. doi: 10.4236/acs.2012.24048.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. F. Mkankam and B. C. Mbane, “Analysis of Daily Precipitation Time Series of the Cameroon Meteorological Network,” Science & Technology Development, Vol. 7, 2000, pp. 77-83.
[2] E. Rogers, D. G. Deaven and G. J. Dimego, “The Regional Analysis System for the Operational Eta Model: Original 80-km Confguration and Recent Changes,” Weather and Forecasting, Vol. 10, No. 4, 1995, pp. 810-825. doi:10.1175/1520-0434(1995)010<0810:TRASFT>2.0.CO;2
[3] T. M. Hamill and S. J. Colucci, “Verification of EtaRSM Short-Range Ensemble Forecasts,” Monthly Weather Review, Vol. 125, No. 6, 1997, pp. 1312-1327. doi:10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2
[4] J. S. Kain and J. M. Fritsch, “Convective Parameterization for Mesoscale Model: The Kain-Fritsch Scheme. The Representation of Cumulus Convection in Numerical Models,” Meteorological Monographs, Vol. 46, 1993, pp. 165-170.
[5] Z. I. Janjic, “The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes,” Monthly Weather Review, Vol. 122, No. 5, 1994, pp. 927-945. doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
[6] T. Black, “The NMC Mesoscale Eta Model: Description and Forecast Examples,” Weather and Forecasting, Vol. 9, No. 2, 1994, pp. 265-278. doi:10.1175/1520-0434(1994)009<0265:TNNMEM>2.0.CO;2
[7] S. C. Chou, J. F. B. Fonseca and J. L. Gomes, “Evaluation of Eta Model Seasonal Precipitation Forecasts over South America,” Nonlinear Processes in Geophysics, Vol. 12, No. 4, 2005, pp. 537-555. doi:10.5194/npg-12-537-2005
[8] M. J. Fennessy and J. Shukla, “Seasonal Prediction over North America with a Regional Model Nested in a Global Model,” Journal of Climate, Vol. 13, No. 14, 2000, pp. 2605-2627. doi:10.1175/1520-0442(2000)013<2605:SPONAW>2.0.CO;2
[9] F. Mesinger, Z. I. Janjic, S. Nickovic, D. Gavrilov and D. G. Deaven, “The Step-Mountain Coordinate: Model Description and Performance for Cases of Alpine Lee Cyclogenesis and for a Case of an Appalachian Redevelopment,” Monthly Weather Review, Vol. 116, No. 7, 1988, pp. 1493-1518. doi:10.1175/1520-0493(1988)116<1493:TSMCMD>2.0.CO;2
[10] F. Mesinger, “A Blocking Technique for Representation of Mountains in Atmospheric Models,” Avition Meteorological Aeronautics, Vol. 44, 1984, pp. 195-202.
[11] G. L. Mellor and T. Yamada, “Development of a Turbulence Closure Model for Geophysical Fluid Problems,” Reviews of Geophysics and Space Physics, Vol. 20, No. 4, 1974, pp. 851-875. doi:10.1029/RG020i004p00851
[12] S. B. Fels and M. D. Schawarztkopf, “The Simplified Exchange Approximation: A New Method for Radiative Transfer Calculations,” Journal of the Atmospheric Sciences, Vol. 32, No. 7, 1975, pp. 1475-1488. doi:10.1175/1520-0469(1975)032<1475:TSEAAN>2.0.CO;2
[13] A. A. Lacis and J. E. Hansen, “A Parametrization of the Absorption Dissipation in the Atmosphere from LargeScale Balance Requirements,” Monthly Weather Review, Vol. 49, 1975, pp. 608-627.
[14] W. A. J. Gallus and M. Segal, “Does Increased Predicted Warm Season Rainfall Indicate Enhanced Likelihood of Rain Occurrence?” Weather and Forecasting, Vol. 19, No. 6, 2004, pp. 1127-1135. doi:10.1175/820.1
[15] S. E. Nicholson, B. Some, J. McCollum, E. Nelkin, D. Klotter, Y. Berte, B. M. Diallo, I. Gaye, G. Kpabeba, O. Ndiaye, J. N. Noukpozounkou, M. M. Tanu, A. Thiam, A. A. Toure and A. K. Traore, “Validation of TRMM and Other Rainfall Estimates with a High-Density Gauge Dataset for West Africa. Part II: Validation of TRMM Rainfall Products,” Journal of Applied Meteorology, Vol. 42, No. 10, 2003, pp. 1355-1368.
[16] J. Venkata Ratnam and J. Krishna Kumar, “Sensitivity of the Simulated Monsoons of 1987 and 1988 to Convective Parameterization Schemes in MM5,” Journal of Climate, Vol. 18, 2005, pp. 2724-2741.
[17] E. Richard, A. Buzzi and G. Zangl, “Quantitative Precipitation Forecasting in the Alps: The Advances Achieved by the Mesoscale Alpine Programme,” Quarterly Journal of the Royal Meteorological Society, Vol. 133, 2007, pp. 831-846.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.