Characterization of Newly Developed Wheat/Barley Introgression Lines in Respect of Aluminium Tolerance


The Al tolerance of newly developed wheat/barley disomic addition, substitution and translocation lines carry chromosomes of three different barley cultivars was evaluated by comparing the root growth in solution containing 75 μM AlCl3 at pH 4.0 to that of known Al-tolerant and sensitive wheat genotypes. The wheat Asakaze komugi, barley Manas cultivars and their hybrid derivatives were found to have high levels of Al tolerance. The wheat line Mv9kr1, barley cultivar Igri and progenies of the hybrids were sensitive to Al. In most cases, the Al tolerance of the wheat/barley introgression lines derived from Al-sensitive wheat Mv9kr1 and barley Betzes with moderate Al tolerance was similar to that of the wheat parents, but the 2DS.2DL-1HS translocation line of Mv9kr1/Betzes exhibited more intensive root growth, while accumulating less Al than the parental lines. This indicates that either the lack of the distal part of chromosome 2DL or the presence of the distal part of 1HS improved the Al tolerance level.

Share and Cite:

E. Darko, B. Barnabás and M. Molnár-Láng, "Characterization of Newly Developed Wheat/Barley Introgression Lines in Respect of Aluminium Tolerance," American Journal of Plant Sciences, Vol. 3 No. 10, 2012, pp. 1462-1469. doi: 10.4236/ajps.2012.310176.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Kruse, “Hordeum-Triticum Hybrids”, Hereditas, Vol. 73, No. 1, 1973, pp. 157-161. doi:10.1111/j.1601-5223.1973.tb01078.x
[2] A. K. Islam, K. W. Shepherd and D. H. Sparrow, “Production and Characterization of Wheat-Barley Addition Lines,” Proceedings of 5th International Wheat Genetics Symposium, New Delhi, 23-28 February 1978, pp. 365-371.
[3] P. P. Jauhar, “Morphological and Cytological Characteristics of Some Wheat × Barley Hybrids,” Theoretical and Applied Genetics, Vol. 90, No. 6, 1995, pp. 872-877. doi:10.1007/BF00222025
[4] S. Taketa, H. Takahashi and K. Takeda, “Genetic Variation in Barley of Crossability with Wheat and Its Quantitative Trait Loci Analysis,” Euphytica, Vol. 103, No. 2, 1998, pp. 187-193. doi:10.1023/A:1018344119747
[5] M. Molnár-Láng, G. Linc, A. Logojan and J. Sutka, “Production and Meiotic Pairing Behaviour of New Hybrids of Winter Wheat (Triticum aestivum) × Winter Barley (Hordeum vulgare),” Genome, Vol. 43 No. 6, 2000, pp. 1045-1054.
[6] é. Szakács and M. Molnár-Láng, “Development and Molecular Cytogenetic Identification of New Winter Wheat/Winter Barley (Martonvásári 9 kr1/Igri) Disomic Addition Lines,“ Genome, Vol. 50 No. 1 2007, pp. 43–50 doi:10.1139/g06-134
[7] I. Molnár, G. Linc, S. Dulai, E. D. Nagy and M. Molnár-Láng, “Ability of Chromosome 4H to Compensate for 4D in Response to Drought Stress in a Newly Developed and Identified Wheat-Barley 4H(4D) Disomic Subsitutiton Line,” Plant Breeding, Vol. 126, No. 4, 2007, pp. 369-374. doi:10.1111/j.1439-0523.2007.01300.x
[8] M. Molnár-Láng, C. Novotny, G. Linc and E. D. Nagy, “Changes in the Meiotic Pairing Behaviour of a Winter Wheat-Winter Barley Hybrid Maintained for a Long Term in Tissue Culture, and Tracing the Barley Chromatin in the Progenies Using GISH and SSR Markers,” Plant Breeding, Vol. 124, No. 3, 2005, pp. 247-252. doi:10.1111/j.1439-0523.2005.01097.x
[9] B. Hoffmann, N. R. Aranyi and M. Molnár-Láng, “Characterization of Wheat-Barley Introgression Lines for Drought Tolerance,” Acta Agronomica Hungarica, Vol. 58, No. 3, 2010, pp. 211-218. doi:10.1556/AAgr.58.2010.3.3
[10] S. Dulai, I. Molnár, B. Haló and M. Molnár-Láng, “Photosynthesis in the 7H Asakaze Komugi/Manas Wheat/ Barley Addition Line During Salt Stress,” Acta Agronomica Hungarica, Vol. 58, No. 3, 2010, pp. 367-376. doi:10.1556/AAgr.58.2010.4.5
[11] P. Maxim and Z. Dut?, “Aluminium Tolerance of Barley I. Efficiency of in Vivo Procedures in Estimation of Genotypic Differences,” Romanian Agricultural Research, Vol. 5-6, 1996, pp. 21-28.
[12] L. V. Kochian, “Cellular Mechanism of Aluminium Toxicity and Resistance in Plants,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 46, 1995, pp. 237-260. doi:10.1146/annurev.pp.46.060195.001321
[13] E. Minella and M. E. Sorrells, “Aluminium Tolerance in Barley: Genetic Relationships among Genotypes of Diverse Origin,” Crop Science, Vol. 32, No. 3, 1992, pp. 593-598.
[14] B. Y. Kim, A. C. Baier, D. J. Somers and J. P. Gustafson, “Aluminum Tolerance in Triticale, Wheat and Rye,” Euphytica, Vol. 120, No. 3, 2001, pp. 329-337. doi:10.1023/A:1017598219054
[15] S. Dai, Z. Yan, D. Liu, L. Zhan, Y. Wei and Y. Zheng, “Evaluation on Chinese Bread Wheat Landraces for Low pH and Aluminium Tolerance Using Hydroponic Screening,” Agricultural Science in China, Vol. 8, No, 3, 2009, pp. 285-292.
[16] T. Sasaki, Y. Yamamoto, B. Ezaki, M. Katsuhara, S. J. Ahn, P. Ryan, E. Delhaize and H. Matsumoto, “A Wheat Gene Encoding an Aluminum-Activated Malate Transporter,” Plant Journal, Vol. 37, No. 5, 2004, pp. 645-653. doi:10.1111/j.1365-313X.2003.01991.x
[17] J. Wang, H. Raman, G. Zhang, N. Mendham and M. Zhou, “Aluminium Tolerance in Barley (Hordeum vulgare L.): Physiological Mechanisms, Genetics and Screening Methods,” Journal of Zhejiang University Science, Vol. 7, No. 10, 2006, pp. 769-787. doi:10.1631/jzus.2006.B0769
[18] P. Ryan, H. Raman, S. Gupta, W. J. Horst and E. Delhaize, “A Second Mechanism for Aluminum Resistance in Wheat Relies on the Constitutive Efflux of Citrate from Roots,” Plant Physiology, Vol. 149, No. 1, 2009, 340-351. doi:10.1104/pp.108.129155
[19] H. Raman, S. Moroni, K. Saito, B. Read and B. Sato, “Identification of AFLP and Microsatellite Markers Linked with an Aluminium Tolerance Gene in Barley (Hordeum vulgare L.),” Theoretical and Applied Genetics, Vol. 105, No. 2-3, 2002, pp. 458-464. doi:10.1007/s00122-002-0934-0
[20] S. Cai, G. H. Bai and D. Zhang, “Quantitative Trait Loci for Aluminum Resistance in Chinese Wheat Landrace FSW,” Theoretical and Applied Genetics, Vol. 117, No. 1, 2008, pp. 49-56. doi:10.1007/s00122-008-0751-1
[21] S. Navakode, A. Weidner, R. K. Varshney, U. Lohwasser, U. Scholz and A. B?rner, “A QTL Analysis of Aluminium Tolerance in Barley Using Gene-Based Markers,” Cereal Research Communication, Vol. 37, No. 4, 2009, pp. 531-540. doi:10.1556/CRC.37.2009.4.6
[22] J. P. Gustafson and K. Ross, “Control of Alien Gene Expression for Aluminium Tolerance in Wheat,” Genome, Vol. 33, No. 1, 1990, pp. 9-12. doi:10.1139/g90-002
[23] G. Budzianowski and H. Wos, “The Effect of Single D-Genome Chromosomes on Aluminum Tolerance of Triticale,” Euphytica, Vol. 137, No. 2, 2004, pp. 165-172. doi:10.1023/B:EUPH.0000041547.76282.01
[24] M. Molnár-Láng, G. Linc, B. R. Friebe and J. Sutka, “Detection of Wheat-Barley Translocations by Genomic in Situ Hybridization in Derivatives of Hybrids Multiplied in Vitro,” Euphytica, Vol. 112, No. 2, 2000, pp. 117-123. doi:10.1023/A:1003840200744
[25] M. Molnár-Láng, G. Linc and J. Sutka, “Transfer of the Recessive Crossability Allele kr1 from Chinese Spring into the Winter Wheat Variety Martonvásári 9,” Euphytica, Vol. 90, No. 2, 1996, pp. 301-305. doi:10.1007/BF00027480
[26] K. Tice, D. R. Parker and C. R. Gardner, “Operationally Defined Apoplastic and Symplastic Aluminum Fractions in Root Tips of Aluminum-intoxicated Wheat,” Plant Physiology, Vol. 100, No. 1, 1992, pp. 309-318. doi:10.1104/pp.100.1.309
[27] A. K. Loes and T. S. Gahoonia, “Genetic Variation in Specific Root Length in Scandinavian Wheat and Barley Accessions,” Euphytica, Vol. 137, No. 2, 2004, pp. 243-249. doi:10.1023/B:EUPH.0000041587.02009.2e
[28] S. P. Jefferies, A. R. Barr, A. Karakousis, J. M. Kretschmer, S. Manning, K. J. Chalmers, J. C. Nelson, A. K. M. R. Islam and P. Langridge, “Mapping of Chromosome Regions Conferring Boron Toxicity Tolerance in Barley (Hordeum vulgare L.),” Theoretical and Applied Genetics, Vol. 98, No. 8, 1999, pp. 1293-1303. doi:10.1007/s001220051195
[29] R. P. Ellis, B. P. Forster, R. Waugh, N. Bonar, L. L. Handley, D. Robinson, D. C. Gordon and W. Powell, “Mapping Physiological Traits in Barley,” New Phytologist, Vol. 137, No. 1, 1997, pp. 149-157. doi:10.1046/j.1469-8137.1997.00822.x
[30] K. M. Cocker, D. E. Evans and M. J. Hodson, “The Amelioration of Aluminium Toxicity by Silicon in Wheat (Triticum aestivum L.): Malate Exudation as Evidence for an in Planta Mechanism,” Planta, Vol. 204, No. 3, 1998, pp. 318-323. doi:10.1007/s004250050262
[31] L. A. Papernik, A. S. Bethea, T. E. Singleton, J. V. Magalhaes, D. F. Garvin and L. V. Kochian, “Physiological Basis of Reduced Al Tolerance in Ditelosomic Lines of Chinese Spring Wheat,” Planta, Vol. 212, No. 5-6, 2001, pp. 829-834. doi:10.1007/s004250000444
[32] K. F. Mayer, S. Taudien, M. Martis, H. Simková, P. Suchánková, H. Gundlach, T. Wicker, A. Petzold, M. Felder, B. Steuernagel, U. Scholz, A. Graner, M. Platzer, J. Dolezel and N. Stein, “Gene Content and Virtual Order of Barley Chromosome 1H,” Plant Physiology, Vol. 151, No. 2, 2009, pp. 496-505. doi:10.1104/pp.109.142612

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.