Optical Absorption of Nano-Composite Thin Films of Au in Teflon

DOI: 10.4236/msa.2010.13023   PDF   HTML     5,155 Downloads   8,997 Views   Citations


Nano-composite films of Au particles in Teflon were obtained by thermal vacuum deposition. The obtained films were characterized by the different shapes and dimensions of the inclusion particles. Absorption spectra of the films were measured in-situ. A model for the calculation of the optical properties of the nano-composite thin films with an inho-mogeneous distribution of the inclusions along the thickness of the film is proposed. Absorption properties of inclusions were analyzed by considering the local field interaction. The calculated absorption profiles are compared with the experimentally obtained absorption profiles. This comparison gives a possibility to draw conclusions about the concentration, shapes and shape distributions of the inclusion particles. For example, the films obtained by duration deposition are characterized by inclusions having the shape of prolate ellipsoids oriented normally to surface of the film.

Share and Cite:

D. Grynko, K. Grytrsenko, V. Lozovski, M. Sopinskyy and G. Strilchuk, "Optical Absorption of Nano-Composite Thin Films of Au in Teflon," Materials Sciences and Applications, Vol. 1 No. 3, 2010, pp. 141-151. doi: 10.4236/msa.2010.13023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. Jacak, P. Hawrylak and A. Wojs, “Quantum Dots,” Springer, Berlin, 1998.
[2] S. Stagira, M. Nisoli, S. De Silvestri, A. Stella, P. Tognini, P. Cheyssac and R. Kofman, “Ultrafast Optical Relaxation Dynamics in Metallic Nanoparticles: From Bulk- Like toward Spatial Confinement Regime,” Chemical Physics, Vol. 251, No. 1-3, 2000, pp. 259-267.
[3] R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deu- tscher, T. Ben David, J. M. Penisson and A. Bourret, “Surface Melting Enhanced by Curvature Effects,” Surface Science, Vol. 303, No. 1-2, 1994, pp. 231-246.
[4] F. Ercolessi, W. Andreoni and E. Tosatti, “Melting of Small Gold Particles: Mechanism and Size Effects,” Phys-ics Review Letters, Vol. 66, No. 7, 1991, pp. 911-914.
[5] N. Cioffi, I. Farella, L. Torsi, A. Valentini and A. Tafuri, “Correlation between Surface Chemical Composition and Vapor Sensing Properties of Gold-Fluorocarbon Nano-composites,” Sensors and Actuators B, Vol. 84, No. 1, 2002, pp. 49-54.
[6] A. V. Goncharenko, D. O. Grynko, K. P. Grytsenko and V. Z. Lozovski, “Preparation and Optical Properties of Au/Teflon Nanocomposites,” Journal of Nanoscience and Nanotechnology, Vol. 5, No. 11, 2005, pp. 1919-1924.
[7] J. H. Holts and S. A. Asher, “Polymerized Colloidal Crystal Hydrogel Films as Intelligent Chemical Sensing Materials,” Nature, Vol. 389, 1997, pp. 829-832.
[8] A. D’Addabbo, A. Valentini and A. Convertin, “Swelling of CFx and CFx(Au) Films,” Journal of Applied Physics, Vol. 87, No. 1, 2000, pp. 2039-2043.
[9] A. Convertino, A. Capobianchi, A. Valentini and E. N. Cirillo, “A New Approach to Organic Solvent Detection: High-Reflectivity Bragg Reflectors Based on a Gold Nanoparticle/Teflon-like Composite Material,” Advanced Materials, Vol. 15, No. 13, 2000, pp. 1103-1105.
[10] S. I. Bozhevolnyi, V. S. Volkov and K. Leosson, “Local-ization and Waveguiding of Surface Plasmon Polaritons in Random Nanostructures,” Physics Review Letters, Vol. 89, No. 18, 2002, pp. 186801-186805.
[11] I. V. Barca, A. P. Brown, M. P. Andrews, T. Galstian, et al., “Linear and Nonlinear Optical Response of Dye Anchored to Gold Nanoparticles,” Canadian Journal of Chemistry, Vol. 80, 2002, pp. 1625-1633.
[12] K. G. Thomas and P. Kamat, “Chromo-phore-Functionalized Gold Nanoparticles,” Accounts of Chemical Research, Vol. 36, No. 12, 2003, pp. 888-898.
[13] Y. P. Bao, M. Huber, T.-F. Wei, S. S. Marla, J. J. Storhoff and U. R. Müller, “SNP Identification in Unamplified Human Genomic DNA with Gold Nanoparticle Probes,” Nucleic Acids Research, Vol. 33, No. 2, 2005, p. e15
[14] H. Hakkinen, S. Abbet, A. Sanchez, U. Heiz and U. Landmanet, “Structural, Electronic, and Impurity-Doping Effects in Nanoscale Chemistry: Supported Gold Nano-clusters,” Angewandte Chemie International Edition, Vol. 42, No. 11, 2003, pp. 1297-1300.
[15] A. Biswas, O. C. Aktas, J. Kanzow, U. Saeed, T. Strunsk- us, V. Zaporojtchenko, and F. Faupel, “Polymer-Metal Optical Nanocomposites with Tunable Particle Plasmon Resonance Prepared by Vapor Phase Co-Deposition,” Materials Letters, Vol. 58, No. 9, 2004, pp. 1530-1534.
[16] U. Schurmann, W. Hartung, H. Takele, V. Zaporojtchenko and F. Faupel, “Controlled Syntheses of Ag-Polytetrafluo- roethylene Nanocomposite Thin Films by Co-Sputtering from Two Magnetron Sources,” Nanotechnology, Vol. 16, No. 8, 2005, pp. 1078.
[17] A. Kiesow, J. E. Morris, C. Radehaus and A. Heilmann, “Switching Behavior of Plasma Polymer Films Containing Silver Nanoparticles,” Journal of Applied Physics, Vol. 94, No. 10, 2003, pp. 6988-6991.
[18] E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya and F. Caruso, “Plasmon Emission in Photoexcited Gold Nanoparticles,” Physical Review B, Vol. 70, No. 20, 2004, pp. 205424- 205428.
[19] Y. Yang, J. Huang, S. Liu and J. Shen, “Preparation, Characterization and Electroluminescence of Zns Nanocrystals in a Polymer Matrix,” Journal of Material Chemistry, Vol. 7, No. 1, 1997, pp. 131-133.
[20] L. A. Baraban and V. Z. Lozovski, “Reflection and Ab-sorption of Light by a Thin Semiconductor Film,” Optics and Spectroscopy, Vol. 97, No. 5, 2004, pp. 810-816.
[21] O. Keller, “Local Fields in the Electrodynamics of Meso- scopic Media,” Physics Reports, Vol. 85, No. 2-3, 1996, pp. 85-262.
[22] J.-J. Griffet and R. Carminati, “Image Formation in Near-Field Optics,” Progress in Surface Science, Vol. 56, No. 3, 1997, pp. 133-237.
[23] “Near Field Optics,” In: D. W. Pohl and D. Courjon, Eds., Kluwer, Dordrecht, 1993.
[24] S. I. Bozhevolnyi, “Optics of Nanostructured Materials,” In: V. M. Markel and T. F. George, Eds., Wiley, New York, 2001.
[25] C. Girard, C. Joachim, and S. Gauthier, “The Physics of the Near-Field,” Reports on Progress in Physics, Vol. 63, No. 6, 2000, pp. 893-938.
[26] L. A. Cury, L. O. Ladeira and A. Righi, “Large Blue Shift in the Absorption Spectra of BEH-PPV Films Containing Gold Nanoparticles,” Synthetic Metals, Vol. 139, No. 2, 2003, pp. 283-286.
[27] H. Song, O. J. Ilegbusi and L. I. Trakhtenberg, “Modeling vapor Deposition of Metal/Semiconductor-Polymer Nano- composite,” Thin Solid Films, Vol. 476, No. 1, 2005, pp. 190-195.
[28] G. Carotenuto and L. Nicolais, “Synthesis and Characteri-zation of Gold-Based Nanoscopic Additives for Poly-mers,” Composites, Part B, Vol. 35, No. 5, 2004, pp. 385- 391.
[29] D. Gritsenko, V. Grynko, V. Lozovski, J. Friedrich, R.-D. Schulze, J. Jurga, A. Convertino and A. Kotko, “Proper-ties of Au-Nano-Clusters in PTFE Film Prepared by Co-Evaporation in a Vacuum,” In: New Directions in Modification and Application of Polymers. Wydanictwo Politechniki Poznanskiej, Poland, 2004.
[30] C. K. O’Sullivan and G. G. Guilbault, “Commercial Quartz Crystal Microbalances―Theory and Applications,” Biosensors and Bioelectronics, Vol. 14, No. 8-9, 1999, pp. 663-670.
[31] J. C. Salamone, “Polymeric Materials Encyclopedia” CRC Press, New York, 1996.
[32] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Physical Review B, Vol. 6, No. 12, 1972, pp. 4370-4379.
[33] H. Stark, “Applications of Optical Fourier Transforms,” Radio i Svyaz’, Moscow, 1988.
[34] R. M. Azzam and N. M. Bashara, “Ellipsometry and Pol- arized Light, ” Holland Publishing, Amsterdam, 1977.
[35] M. V. Sopinskyy, P. E. Shepelyavyi, A. V. Stronski and E. F. Venger, “Ellipsometry and AFM Study of Post- Deposi-tion Transformations in Vacuum-Evaporated As-S-Se Films,” Journal of Optoelectronics and Advanced Mate-rials, Vol. 7, No. 5, 2005, pp. 2255- 2266.
[36] I. V. Lysy, O. I. Vlasenko, M. V. Sopinskyy, A. O. Gu- banova and T. A. Kryskov, “Ellipsometric Measurements of Refractive Index of Chalcogenide and Chalcogenide- Based Bulk Glassy Samples,” Moldavian Journal of the Physical Sciences, Vol. 6, No. 2-3, 2007, pp. 320-328.
[37] J. A. Nelder and R. Mead, “A Simplex Method for Func-tion Minimization,” Computational Journal, Vol. 7, No. 2, 1965, pp. 308-313.
[38] M. Pierno, C. S. Casari, R. Piazza and C. E. Bottani, “Structural Evolution of Crystalline Polymer Latex Films: Propagating and Confined Acoustic Modes,” Applied Physics Letter, Vol. 82, No. 10, 2003, pp. 1532-1535.
[39] D. J. Bergman, “The Dielectric Constant of a Composite Material—A Problem in Classical Physics,” Physics Re-ports, Vol. 43, 1978, pp. 377-407.
[40] D. J. Bergman and D. Stroud. “Physical Properties of Macroscopically Inhomogeneous Media,” Solid-State Physics, Vol. 46, 1992, pp. 147-269.
[41] K. E. Peiponen, E. M. Varianen, J. J. Saarinen and M. O. A. Makinen, “The Dispersion Theory of Optically Linear and Nonlinear Bruggeman Liquids,” Optics Communica-tions, Vol. 205, No. 1-3, 2002, pp. 17-24.
[42] E. F. Venger, A. V. Goncharenko and M. L. Dmitruk, “Optics of Small Particles and Disperse Media,” Naukova Dumka, Kyiv, 1999.
[43] D. W. Pohl, “Scanning Near-Field Optical Microscopy,” In: C. J. R. Sheppard and T. Mulvey, Eds., Advances in Opt-ical and Electron Microscopy, 12 Edition, Academic Press, London, 1990, p. 243.
[44] G. Kaupp, “Atomic Force Microscopy, Scanning Nearfield Optical Microscopy and Nanoscratching: Application to Rough and Natural Surfaces,” Springer, Heidelberg, 2006.
[45] V. Lozovski, Y. Nazarok and S. I. Bozhevolnyi, “Near- Field Imaging of Pyramid-Like Nanoparticles at a Sur-face,” Physica E, Vol. 11, No. 4, 2001, pp. 323-331.
[46] V. Kochergin, V. Zaporojtchenko, H. Takele, F. Faupel, and H. F?ll, “Improved Effective Medium Approach: Application to Metal Nanocomposites,” Journal of Applied Physics, Vol. 101, No. 2, 2007, pp. 024302-024309.
[47] D. Dalacu and L. Martinu, “Spectroellipsometric Charac-terization of Plasma-Deposited Au/Fluoropolymer Nano-composite Films,” Journal Vacuum Science and Tech-nology A, Vol. 17, No. 3, 1999, pp. 877-883.
[48] L. Baraban and V. Lozovski, “Light Absorption by Thin Nano-Composite Films with Different Distributions of Inclusions along Film Thickness,” Semiconductor Physics, Quantum Electronics and Optoelectronics, Vol. 6, No. 3, 2009, pp. 667-672.
[49] A. A. Maradudin and D. L. Mills, “Scattering and Ab-sorption of Electromagnetic Radiation by a Semi-Infinite Medium in the Presence of Surface Roughness,” Physical Review B, Vol. 11, No. 4, 1975, pp. 1392-1415.
[50] A. V. Goncharenko, “Effective Dielectric Response of a Shape-Distributed Particle System,” Journal of Physics: Condensed Matter, Vol. 13, No. 35, 2001, pp. 8217-8225.
[51] A.V. Goncharenko, “Generalizations of the Bruggeman Equation and a Concept of Shape-Distributed Particle Composites,” Physical Review E, Vol. 68, No. 4, 2003, pp. 041108-041121.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.