Probe and Emission Spectrometry Diagnostics in Hollow Cathode Magnetron

Abstract

This paper deals with the characterization of an ionized physical vapor deposition (IPVD) by means of hollow cathode magnetron. Langmuir probe, optical emission spectroscopy measurements were used to study a mechanism for the production of excited argon and copper atoms and ions. The kinetic processes of excitation were considered and the main processes were determined using results of measurements. The pressure range is 0.5 - 10 mTorr with 1- 5 kW discharge power. Plasma parameters such as electron densities and temperatures, electron energy distribution function, plasma space and floating potentials as a function of the position, pressure and power in the growth chamber were measured. The plasma density is up to 1012 cm?3 at 20 cm from the magnetron for 10 mTorr.

Share and Cite:

N. Poluektov, Y. Tsar’gorodsev, I. Usatov, A. Evstigneev and I. Kamyschov, "Probe and Emission Spectrometry Diagnostics in Hollow Cathode Magnetron," Journal of Modern Physics, Vol. 3 No. 10, 2012, pp. 1494-1502. doi: 10.4236/jmp.2012.310185.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. Klawuhn, G. C. D’Couto, K. A. Ashtiani, P. Rymer, M. A. Biberger and K. B. Levy, “Ionized Physical-Vapor Deposition Using a Hollow-Cathode Magnetron Source for Advanced Metallization,” Journal of Vacuum Science & Technology, Vol. 18A, No. 4, 2000, pp. 1546-1549.
[2] V. Vyas and M. J. Kushner, “Scaling of Hollow Cathode Magnetrons for Ionized Metal Physical Vapor Deposition,” Journal of Vacuum Science & Technology, Vol. 24A, No. 5, 2006, pp. 1955-1969.
[3] J. Hopwood and F. Qian, “Mechanism for Highly Ionized Magnetron Sputtering,” Journal of Applied Physics, Vol. 78, No. 2, 1995, pp. 758-765. doi:10.1063/1.360334
[4] J. Hopwood, “Ionized Physical Vapor Deposition of Integrated Circuit Interconnects,” Physics of Plasmas, Vol. 5, No. 5, 1998, pp. 1624-1631. doi:10.1063/1.872829
[5] S. M. Rossnagel, “Thin Film Deposition with Physical Vapor Deposition and Related Technologies,” Journal of Applied Physics, Vol. 21, No. 5, 2003, pp. 74-87. doi:10.1116/1.1600450
[6] K. Ostrikov and A. B. Mutphy, “Plasma-Aided Nanofabrication: Where Is the Cutting Edge?” Journal of Physics D: Applied Physics, Vol. 40, No. 8, 2007, pp. 2223-2241. doi:10.1088/0022-3727/40/8/S01
[7] A. Anders, “Metal Plasmas for the Fabrication of Nanostructures,” Journal of Physics D: Applied Physics, Vol. 40, No. 8, 2007, pp. 2272-2284. doi:10.1088/0022-3727/40/8/S06
[8] S. M. Gorbatkin and S. M. Rossnagel, “Cu Metallization Using a Permanent Magnet ECR Microwave Plasma/ Sputtering Hybrid System,” Journal of Vacuum Science & Technology, Vol. 14B, No. 3, 1996, pp. 1853-1859.
[9] L. Meng, R. Raju, R. Flauta, H. Shin and D. N. Ruzic, “In Situ Plasma Diagnostics Study of a Commercial High-Power Hollow Cathode Magnetron Deposition Tool,” Journal of Vacuum Science & Technology, Vol. 28A, No. 1, 2010, pp. 112-118.
[10] L. Wu, E. Ko, A. Dulkin, K. J. Park, S. Fields, K. Leeser, L. Meng and D. N. Ruzic, “Flux Energy Analysis of Species in Hollow Cathode Magnetron Ionize Physical Vapor Deposition of Copper,” Review of Scientific Instruments, Vol. 81, No. 12, 2010, Article ID: 123502.
[11] J. G. Laframboise “Theory of Spherical and Cylindrical Langmuir Probes in a Collisionless Maxwellian Plasma at Rest,” University of Toronto, Toronto, 1966.
[12] M. Mausbach, “Parametrization of the Laframboise Theory for Cylindrical Langmuir Probe Analysis,” Journal of Vacuum Science & Technology, Vol. 15A, No. 6, 1997, pp. 2923-2929.
[13] M. A. Lieberman and A. J. Lichtenberg, “Principles of Plasma Discharges and Materials Processing,” Wiley, New York, 1994.
[14] R. W. McWhirter, “Spectral Intensities,” In: R. H. Huddlestone and S. L. Leonard, Eds., Plasma Diagnostic Techniques, Academic, New York, 1965, pp. 165-217.
[15] C. Nouvellon, S. Konstantinidis, J. P. Dauchot, M. Wautelet, P. Y. Jouan, A. Ricard and M. Hecq, “Emission Spectrometry Diagnostic of Sputtered Titanium in Magnetron Amplified Discharge,” Journal of Applied Physics, Vol. 92, No. 1, 2002, pp. 32-36. doi:10.1063/1.1481780
[16] J. B. Boffard, R. O. Jung, Ch. C. Lin and A. E. Wendt, “Measurement of Metastablt and Resonance Level Densities in Rare-Gas Plasmas by Optical Emission Spectroscopy,” Plasma Sources Science and Technology, Vol. 18, No. 3, 2009, pp. 1-11. doi:10.1088/0963-0252/18/3/035017
[17] G. A. Hebner, “Spatially Resolved, Exited State Densities and Neutral and Ion Temperatures in Inductively Coupled Plasmas,” Journal of Applied Physics, Vol. 80, No. 5, 1996, pp. 2624-2636. doi:10.1063/1.363178
[18] D. Leonhardt, C. R. Eddy, V. A. Shamamian, R. F. Fensler and J. E. Butler, “Argon Metastables in a High Density Processing Plasma,” Journal of Applied Physics, Vol. 83, No. 6, 1998, pp. 2971-2978. doi:10.1063/1.367123

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.