Air-Pollutant-Philic Plants for Air Remediation

DOI: 10.4236/jep.2012.310153   PDF   HTML     4,735 Downloads   6,864 Views   Citations


In this communication, we review our work over two decades on air-pollutant-philic plants that can grow with air pollutants as the sole nutrient source. We believe that such plants are instrumental in mitigating air pollution. Our target air pollutant has been atmospheric nitrogen dioxide (NO2), and our work on this subject has consisted of three parts: Variation in plants’ abilities to mitigate air pollutants among naturally occurring plants, genetic improvement of plants’ abilities to mitigate air pollutants, and the plant vitalization effect of NO2. So far, an estimation of the half-life of nitrogen derived from NO2 uptake in plants belonging to the 217 taxa studied to date has shown no plants to be naturally occurring air-pollutant-philic. However, we found that an enormous difference exists in plants’ ability to uptake and assimilate atmospheric NO2. Future studies on the causes of this process may provide an important clue to aid the genetic production of plants that are effectively air-pollutant-philic. Both genetic engineering of the genes involved in the primary nitrate metabolism and genetic modification by ion-beam irradiation failed to make plants air-pollutant-philic, but mutants obtained in these studies will prove useful in revealing those genes critical in doing so. During our study on air-pollutant-philic plants, we unexpectedly discovered that prolonged exposure of plants to a sufficient level of NO2 activates the uptake and metabolism of nutrients that fuel plant growth and development. We named this phenomenon “the plant vitalization effect of NO2” (PVEON). Investigations into the mechanisms and genes involved in PVEON will provide an important clue to making plants air-pollutant-philic in the future.

Share and Cite:

M. Takahashi and H. Morikawa, "Air-Pollutant-Philic Plants for Air Remediation," Journal of Environmental Protection, Vol. 3 No. 10, 2012, pp. 1346-1352. doi: 10.4236/jep.2012.310153.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Morikawa, A. Higaki, M. Nohno, M. Kamada, M. Nakata, G. Toyohara, K. Fujita and K. Irifune, “Air-Pollutant-Philic Plants from Nature,” In: N. Murata, Ed., Research in Photosynthesis, Vol. IV, Kluwer Academic Publishers, Dordrecht, 1992, pp. 79-82.
[2] M. Kamada, A. Higaki, Y. Jin, M. Ayabe, M. Seki, T. Sawasaki, S. Ida, G. Toyohara, K. Irifune and H. Morikawa, “Transgenic ‘Air-Pollutant-Philic Plants’ Produced by Particle Bombardment,” In: N. Murata, Ed., Research in Photosynthesis, Vol. IV, Kluwer Academic Publishers, Dordrecht, 1992, pp. 83-86.
[3] NationMaster, “Urban NO2 concentration (most recent) by country,”
[4] WHO, “Air Quality and Health,” 2011.
[5] Ministry of the Environment of Government of Japan, “White paper,”
[6] A. R. Wellburn, “Air Pollution and Climate Change: The Biological Impact,” Longman Scientific & Technical, Harlow, 1994.
[7] A. J. Zeevaart, “Some Effects of Fumigating Plants for Short Periods with NO2,” Environmental Pollution, Vol. 11, No. 2, 1976, pp. 97-108.doi:10.1016/0013-9327(76)90022-7
[8] Y.-N. Lee and S. E. Schwartz, “Reaction Kinetics of Nitrogen Dioxide with Liquid Water at Low Partial Pressure,” Journal of Physical Chemistry, Vol. 85, No. 7, 1981, pp. 840-848. doi:10.1021/j150607a022
[9] A. Rowland, A. J. S. Murray and A. R. Wellburn, “Oxides of Nitrogen and Their Impact upon Vegetation,” Reviews on Environmental Health, Vol. 5, No. 4, 1985, pp. 295-342.
[10] P. Ramge, F.-W. Badeck, M. Pl?chl and G. H. Kohlmaier, “Apoplastic Antioxidants as Decisive Elimination Factors within the Uptake Process of Nitrogen Dioxide into Leaf Tissues,” New Phytologist, Vol. 125, No. 4, 1993, pp. 771- 785. doi:10.1111/j.1469-8137.1993.tb03927.x
[11] W. Larcher, “Physiological Plant Ecology,” Springer-Ver- lag, Berlin, 1995. doi:10.1007/978-3-642-87851-0
[12] S. V. Durmishidze and N. N. Nutsubidze, “Absorption and Conversion of Nitrogen Dioxide by Higher Plants,” Doklady Biochemistry and Biophysics, Vol. 227, 1976, pp. 104- 107.
[13] H. H. Rogers, J. C. Campbell and R. J. Volk, “Nitrogen- 15 Dioxide Uptake and Incorporation by Phaseolus vulgaris (L.),” Science, Vol. 206, No. 4416, 1979, pp. 333- 335. doi:10.1126/science.206.4416.333
[14] T. Yoneyama and H. Sasakawa, “Transformation of Atmospheric Nitrogen Dioxide Absorbed in Spinach Leaves,” Plant and Cell Physiology, Vol. 20, 1979, pp. 263-266.
[15] A. R. Wellburn, “Why Are Atmospheric Oxides of Nitrogen Usually Phytotoxic and Not Alternative Fertilizers?” New Phytologist, Vol. 115, No. 3, 1990, pp. 395- 429. doi:10.1111/j.1469-8137.1990.tb00467.x
[16] H. Morikawa, A. Higaki, M. Nohno, M. Takahashi, M. Kamada, M. Nakata, G. Toyohara, Y. Okamura, K. Matsui, S. Kitani, K. Fujita, K. Irifune and N. Goshima, “More than a 600-Fold Variation in Nitrogen Dioxide Assimilation among 217 Plant Taxa,” Plant, Cell and Environment, Vol. 21, 1998, pp. 180-190. doi:10.1046/j.1365-3040.1998.00255.x
[17] M. Takahashi, Y. Sasaki, S. Ida and H. Morikawa, “Enrichment of Nitrite Reductase Gene Improves the Ability of Arabidopsis thaliana Plants to Assimilate Nitrogen Dioxide,” Plant Physiology, Vol. 126, No. 2, 2001, pp. 731- 741. doi:10.1104/pp.126.2.731
[18] H. Morikawa, M. Takahashi, A. Sakamoto, T. Matsubara, G. Arimura, Y. Kawamura, K. Fukunaga, K. Fujita, N. Sakurai, T. Hirata, H. Ide, N. Nonoyama and H. Suzuki, “Formation of Unidentified Nitrogen in Plants: An Implication for a Novel Nitrogen Metabolism,” Planta, Vol. 219, No. 1, 2004, pp. 14-22. doi:10.1007/s00425-003-1200-7
[19] M. Takahashi, A. Higaki, M. Nohno, M. Kamada, Y. Okamura, K. Matsui, S. Kitani and H. Morikawa, “Differential Assimilation of Nitrogen Dioxide by 70 Taxa of Roadside Trees at an Urban Pollution Level,” Chemosphere, Vol. 61, No. 5, 2005, pp. 633-639.doi:10.1016/j.chemosphere.2005.03.033
[20] X.-Y. Yang, W.-P. Chen, A. K. Rendah, A. D. Hegeman, W. M. Gray and J. D. Cohen, “Measuring the Turnover Rates of Arabidopsis Proteins Using Deuterium Oxide: An Auxin Signaling Case Study,” The Plant Journal, Vol. 63, No. 4, 2010, pp. 680-695.doi:10.1111/j.1365-313X.2010.04266.x
[21] S. E. H. Adam, J. Shigeto, A. Sakamoto, M. Takahashi and H. Morikawa, “Atmospheric Nitrogen Dioxide at Ambient Levels Stimulates Growth and Development of Horticultural Plants,” Botany, Vol. 86, No. 2, 2008, pp. 213-217. doi:10.1139/B07-129
[22] Y. Kawamura, K. Fukunaga, A. Umehara, M. Takahashi and H. Morikawa, “Selection of Rhododendron mucronatum Plants that Have a High Capacity for Nitrogen Dioxide Uptake,” Acta Biotechnologica, Vol. 22, No. 1-2, 2002, pp. 113-120. doi:10.1002/1521-3846(200205)22:1/2<113::AID-ABIO113>3.0.CO;2-B
[23] J. Shigeto, S. Yoshihara, S. E. H. Adam, K. Sueyoshi, A. Sakamoto, H. Morikawa and M. Takahashi, “Genetic Engineering of Nitrite Reductase Gene Improves Uptake and Assimilation of Nitrogen Dioxide by Rhaphiolepis umbellata (Thunb.) Makino,” Plant Biotechnology, Vol. 23, 2006, pp. 111-116. doi:10.5511/plantbiotechnology.23.111
[24] M. Takahashi, S. Kohama, J. Shigeto, Y. Hase, A. Tanaka and H. Morikawa, “Mutants of Ficus pumila Produced by Ion Beam Irradiation with an Improved Ability to Uptake and Assimilate Atmospheric Nitrogen Dioxide,” International Journal of Phytoremediation, Vol. 14, No. 3, 2012, pp. 275-281. doi:10.1080/15226514.2011.604694
[25] A. Tanaka, N. Shikazono, Y. Yokota, H. Watanabe and S. Tana, “Effects of Heavy Ions on the Generation and Sur- vival of Arabidopsis thaliana,” International Journal of Radiation Biology, Vol. 72, No. 1, 1997, pp. 121-127.doi:10.1080/095530097143608
[26] H. Kacser and J. W. Porteous, “Control of Metabolism: What Do We Have to Measure?” Trends in Biochemical Sciences, Vol. 12, No. 1, 1987, pp. 5-14.doi:10.1016/0968-0004(87)90005-3
[27] M. Stitt and U. Sonnewald, “Regulation of Metabolism in Transgenic Plants,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 46, 1995, pp. 341-368. doi:10.1146/annurev.pp.46.060195.002013
[28] M. Takahashi, M. Nakagawa, A. Sakamoto, C. Ohsumi, T. Matsubara and H. Morikawa, “Atmospheric Nitrogen Dioxide Gas is a Plant Vitalization Signal to Increase Plant Size and the Contents of Cell Constituents,” New Phytologist, Vol. 168, No. 1, 2005, pp. 149-154. doi:10.1111/j.1469-8137.2005.01493.x
[29] T. M. Capron and T. M. Mansfield, “Inhibition of Growth in Tomato by Air Polluted with Nitrogen Oxides,” Journal of Experimental Botany, Vol. 28, No. 1, 1977, pp. 112- 116. doi:10.1093/jxb/28.1.112
[30] H. Saxe, “Relative Sensitivity of Greenhouse Pot Plants to Long-Term Exposures of NO- and NO2-Containing Air,” Environmental Pollution, Vol. 85, No. 3, 1994, pp. 283-290. doi:10.1016/0269-7491(94)90049-3
[31] R. Sandhu and G. Gupta, “Effects of Nitrogen Dioxide on Growth and Yield of Black Turtle Bean (Phaseolus vulgaris L.) cv. ‘Domino,’” Environmental Pollution, Vol. 59, No. 4, 1989, pp. 337-344. doi:10.1016/0269-7491(89)90160-7
[32] Q. Xu, B. Zhou, C. Ma, X. Xu, J. Xu, Y. Jiang, C. Liu, G. Li, S. J. Herbert and L. Hao, “Salicylic Acid-Altering Arabidopsis Mutants Response to NO2 Exposure,” Bulletin of Environmental Contamination and Toxicology, Vol. 84, No. 1, 2010, pp. 106-111.doi:10.1007/s00128-009-9913-3
[33] D. M. Vallano and J. P. Sparks, “Quantifying Foliar Uptake of Gaseous Nitrogen Dioxide Using Enriched Foliar ?15N Values,” New Phytologist, Vol. 177, No. 4, 2008, pp. 946-955. doi:10.1111/j.1469-8137.2007.02311.x
[34] M. Takahashi, S. E. Adam, D. Konaka and H. Morikawa, “Nitrogen Dioxide at an Ambient Level Improves the Capability of Kenaf (Hibiscus cannabinus) to Decontaminate Cadmium,” International Journal of Phytoremediation, Vol. 10, No. 1, 2008, pp. 73-76.doi:10.1080/15226510701827085
[35] M. Takahashi, A. Sakamoto, H. Ezura and H. Morikawa, “Prolonged Exposure to Atmospheric Nitrogen Dioxide Increases Fruit Yield of Tomato Plants,” Plant Biotechnology, Vol. 28, No. 5, 2011, pp. 485-487. doi:10.5511/plantbiotechnology.11.0819a
[36] F. H. F. G. Spierings, “Influence of Fumigations with NO2 on Growth and Yield of Tomato Plants,” Nether- lands Journal of Plant Pathology, Vol. 77, No. 6, 1971, pp. 194-200. doi:10.1007/BF01977278

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.