Share This Article:

Detailed Theoretical Investigations on the L-Shell Absorption of Open-M-Shell Germanium Plasmas:Effect of Autoionization Resonance Broadening

Abstract Full-Text HTML Download Download as PDF (Size:1068KB) PP. 1670-1677
DOI: 10.4236/jmp.2012.330204    3,783 Downloads   5,709 Views  

ABSTRACT

Radiative opacity of open-M-shell germanium plasmas in the L-shell photon energy region were investigated in detail by using a fully relativistic detailed level accounting approach. Among other physical effects such as relativistic and the interaction between fine-structure levels belonging to the same non-relativistic configuration and different configurations, particular attention is paid on the effect of autoionization resonance broadening on the L-shell absorption. The results show that for plasmas at present and past typical experimental conditions, line width due to autoionization resonance broadening dominate among all the physical broadening mechanisms including electron impact and Doppler broadenings. Such an effect is most pronounced for ions with just a few 2p-nd transition lines such as Ge14+, while it is not so pronounced for complex ions such as Ge16+, where there are so many 2p-nd lines that line overlapping partly conceal the effect of autoionization resonance broadening. After taking the effect of autoionization resonance broadening into account, detailed comparisons are made with available experimental spectra at different physical conditions of different plasma temperatures and densities. The L-shell absorption is sensitive to the plasma temperature, especially in the 2p-3d excitation energy region. The potential of utlizing the relative shape and intensity of the 2p-3d spin-orbit splitting as temperature diagnostics is investigated.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

W. Xiang, J. Zeng, Y. Fu and C. Gao, "Detailed Theoretical Investigations on the L-Shell Absorption of Open-M-Shell Germanium Plasmas:Effect of Autoionization Resonance Broadening," Journal of Modern Physics, Vol. 3 No. 10A, 2012, pp. 1670-1677. doi: 10.4236/jmp.2012.330204.

References

[1] J. M. Foster, D. J. Hoarty, C. C. Smith, P. A. Rosen, S. J. Davidson, S. J. Rose, T. S. Perry and F. J. D. Serduke, “L-Shell Absorption Spectrum of an Open-M-Shell Germanium Plasma: Comparison of Experimental Data with a Detailed Configuration-Accounting Calculation,” Physical Review Letter, Vol. 67, No. 23, 1991, pp. 3255-3258. doi:10.1103/PhysRevLett.67.3255
[2] T. S. Perry, K. S. Budil, R. Cauble, R. A. Ward, D. R. Back, C. A. Iglesias, B. G. Wilson, J. K. Nash, C. C. Smith, J. M. Foster, S. J. Davidson, F. J. D. Serduke, J. D. Kilkenny and R. W. Lee, “Quantitative Measurement of Mid-z Opacities,” Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 54, No. 1-2, 1995, pp. 317-324. doi:10.1016/0022-4073(95)00066-T
[3] P. Renaudin, C. Blancard, J. Bruneau, G. Faussurier, J.-E. Fuchs and S. Gary, “Absorption Experiments on X-Ray-Heated Magnesium and Germanium Constrained Samples,” Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 99, No. 1-3, 2006, pp. 511-522. doi:10.1016/j.jqsrt.2005.05.041
[4] G. Loisel, P. Arnault, S. Bastiani-Ceccotti, T. Blenski, T. Caillaud, J. Fariaut, W. Folsner, F. Gilleron, J.-C. Pain, M. Poirier, C. Reverdin, V. Silvert, F. Thais, S. Turck-Chieze and B. Villette, “Absorption Spectroscopy of Mid and Neighboring Z Plasmas: Iron, Nickel, Copper and Germanium,” High Energy Density Physics, Vol. 5, No. 3, 2009, pp. 173-181. doi:10.1016/j.hedp.2009.05.015
[5] D. J. Hoarty, S. F. James, C. R. D. Brown, B. M. Williams, H. K. Chung, J. W. O. Harris, L. M. Upcraft, B. J. B. Crowley, C. C. Smith and R. W. Lee, “Measurements of Emission Spectra from Hot, Dense Germanium Plasma in Short Pulse Laser Experiments,” High Energy Density Physics, Vol. 6, No. 1, 2010, pp. 105-108. doi:10.1016/j.hedp.2009.05.019
[6] J. W. O. Harris, L. M. Upcraft, D. J. Hoarty, B. J. B. Crowley, C. R. D. Brown and S. F. James, “A Comparison of Theory and Experiment for High Density, High Temperature Germanium Spectra,” High Energy Density Physics, Vol. 6, No. 1, 2010, pp. 95-98. doi:10.1016/j.hedp.2009.06.001
[7] Y. L. Peng, D. Xia and J. M. Li, “A Generalized Quasi-Sum Relations for Oscillator Strengths in Transition Arrays: Theoretical Study of the Opacity of Ge Plasmas,” Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 87, No. 1, 2004, pp. 95-106. doi:10.1016/j.jqsrt.2003.12.024
[8] V. J. L. White, J. M. Foster, J. C. V. Hansom and P. A. Rosen, “Measurements of Radiation Heat Transport in Germanium: Validationinebreak of an Opacity Model,” Physical Review E, Vol. 49, No. 6, 1994, pp. R4803-R4806. doi:10.1103/PhysRevE.49.R4803
[9] J. Yan and J. M. Li, “Theoretical Simulation of the Transmission Spectra of Fe and Ge Plasmas,” Chinese Physical Letter, Vol. 17, No. 3, 2000, pp. 194-196. doi:10.1088/0256-307X/17/3/014
[10] A. Bar-Shalom, J. Oreg and W. H. Goldstein, “Configuration Interaction in LTE Spectra of Heavy Elements,” Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 51, No. 1-2, 1994, pp. 27-39. doi:10.1016/0022-4073(94)90062-0
[11] T. Blenski, Loisel, M. Poirier, F. Thais, P. Arnault, T. Caillaud, J. Fariaut, F. Gilleron, J.-C. Pain, Q. Porcherot, C. Reverdin, V. Silvert, B. Villette, S. Bastiani-Ceccotti, S. Turck-Chieze, W. Foelsner and F. de Gaufridy De Dortan, “Theoretical Interpretation of X-Rays Photo-Absorption in Medium-Z Elements Plasmas Measured at LULI-2000 Facility,” High Energy Density Physics, Vol. 7, 2011, pp. 320-326. doi:10.1016/j.hedp.2011.06.004
[12] Q. Porcherot, J. C. Pain, F. Gilleron and T. Blenski, “A Consistent Approach for Mixed Detailed and Statistical Calculation of Opacities in Hot Plasmas,” High Energy Density Physics, Vol. 7, No. 4, 2011, pp. 234-239. doi:10.1016/j.hedp.2011.05.001
[13] F. Gilleron, J. C. Pain, Q. Porcherot, J. Bauche and C. Bauche-Arnoult, “Corrections to Statistical Modeling of Spectra for Plasmas at Moderate or Low Temperatures,” High Energy Density Physics, Vol. 7, No. 4, 2011, pp. 277-284. doi:10.1016/j.hedp.2011.05.005
[14] J. A. Gaffney and S. J. Rose, “The Effect of Unresolved Transition Arrays on Plasma Opacity Calculations,” High Energy Density Physics, Vol. 7, No. 4, 2011, pp. 240-246. doi:10.1016/j.hedp.2011.05.003
[15] C. J. Fontes, J. Abdallah Jr., C. Bowen, R. W. Lee and Yu Ralchenko, “Review of the NLTE-5 Kinetics Workshop,” High Energy Density Physics, Vol. 5, No. 1-2, 2009, pp. 15-22. doi:10.1016/j.hedp.2009.02.004
[16] J. R. Albritton and B. G. Wilson, “Non-LTE Ionization and Energy Balance in High-Z Laser Plasmas Including Two-Electron Transitions,” Physical Review Letter, Vol. 83, No. 8, 1999, pp. 1594-1597. doi:10.1103/PhysRevLett.83.1594
[17] Y. Hahn, “Electron-Ion Recombination Processes: An Overview,” Reports on Progress in Physics, Vol. 60, No. 7, 1997, pp. 691-759. doi:10.1088/0034-4885/60/7/001
[18] V. L. Jacobs, “Autoionization Phenomena in Plasma Radiation Processes,” Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 54, 1995, No. 1-2, pp. 195- 205.doi:10.1016/0022-4073(95)00055-P
[19] J. Bauche, C. Bauche-Arnoult and O. Peyrusse, “Role of Dielectronic Recombination and Autoionizing States in the Dynamic Equilibrium of Non-LTE Plasmas,” High Energy Density Physics, Vol. 5, No. 1-2, 2009, pp. 51-60. doi:10.1016/j.hedp.2009.02.003
[20] V. L. Jacobs, “Kinetic and Spectral Descriptions for Atomic Processes Involving Autoionizing Resonances in High-Temperature Plasmas,” High Energy Density Physics, Vol. 5, No. 1-2, 2009, pp. 80-88. doi:10.1016/j.hedp.2009.03.001
[21] C. Gao and J. L. Zeng, “Validity of Analytical Formulas for Autoionization and Dielectronic Capture Rates Used in Collisional-Radiative Models,” Physical Review A, Vol. Vol. 82, No. 6, 2010, pp. 1-8. doi:10.1103/PhysRevA.82.062515
[22] R. D. Cowan, “The Theory of Atomic Structure and Spectra,” University of California Press, Berkeley, 1981.
[23] M. S. Dimitrijevic and N. Konjevic, “Stark Widths of Doubly- and Triply-Ionized Atom Lines,” Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 24, No. 6, 1980, pp. 451-459. doi:10.1016/0022-4073(80)90014-X
[24] M. S. Dimitrijevic and N. Konjevic, “Simple Estimates for Stark Broadening of Ion Lines in Stellar Plasmas,” Astronomy & Astrophysics, Vol. 172, 1987, pp. 345-349.
[25] D. J. Heading, J. S. Wark, G. R. Bennett and R. W. Lee, “Simulations of Spectra from Dense Aluminium Plasmas,” Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 54, No. 1-2, 1995, pp. 167-180.
[26] M. F. Gu, “Indirect X-Ray Line-Formation Process in Iron L-Shell Ions,” The Astrophysical Journal, Vol. 582, No. 2, 2003, pp. 1241-1250. doi:10.1086/344745
[27] F. Gilleron, J. Bauche and C. Bauche-Arnoult, “A Statistical Approach for Simulating Detailed-Line Spectra,” Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 40, No. 15, 2007, pp. 3057-3074. doi:10.1088/0953-4075/40/15/007

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.