New Method for Diagnostics of Ion Implantation Induced Charge Carrier Traps in Micro- and Nanoelectronic Devices

DOI: 10.4236/wjnst.2012.24027   PDF   HTML   XML   6,471 Downloads   9,114 Views   Citations


An important problem of defect charging in electron-hole plasma in a semiconductor electronic device is investigated using the analogy of dust charging in dusty plasmas. This investigation yielded physical picture of the problem along with the mathematical model. Charging and discharging mechanism of charge carrier traps in a semiconductor elec-tronic device is also given. Potential applications of the study in semiconductor device technology are discussed. It would be interesting to find out how dust acoustic waves in electron-hole plasma in micro and nanoelectronic devices can be useful in finding out charge carrier trap properties of impurities or defects which serve as dust particles in elec-tron-hole (e-h) plasma. A new method based on an established technique “deep level transient spectroscopy” (DLTS) is described here suggesting the determination of properties of charge carrier traps in present and future semiconductor devices by measuring the frequency of dust acoustic waves (DAW). Relationship between frequency of DAW and properties of traps is described mathematically proposing the basis of a technique, called here, dust mode frequency deep level transient spectroscopy (DMF-DLTS).

Share and Cite:

M. Rana, "New Method for Diagnostics of Ion Implantation Induced Charge Carrier Traps in Micro- and Nanoelectronic Devices," World Journal of Nuclear Science and Technology, Vol. 2 No. 4, 2012, pp. 174-180. doi: 10.4236/wjnst.2012.24027.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] F. D. Auret, A. R. Peaker, V. P. Markevich, L. Dobaczewski and R. M.Gwilliam, “High-Resolution DLTS of Vacancy-Donor Pairs in P-, Asand Sb-Doped Silicon,” Physica B: Condensed Matter, Vol. 376-377, 2006. pp. 73-76.
[2] V. P. Markevich, I. D. Hawkins, A. R. Peaker, K. V. Emtsev, V. V. Litenov, L. I. Murin and L. Dobaczewski, “Vacancy-Group-V-Impurity Atom Pairs in Ge Crystals Doped with P, As, Sb, and Bi,” Physical Review B, Vol. 70, No. 23, 2004, Article ID: 235213.
[3] H. J. Queisser and E. E. Haller, “Defects in Semiconductors: Some Fatal, Some Vital,” Science, Vol. 281, No. 5379, 1998, pp. 945-950. doi:10.1126/science.281.5379.945
[4] P. Muret, J. Pernot, T. Teraji and T. Itoh, “Near-Surface Defects in Boron-Doped Diamond Schottky Diodes Studied from Capacitance Transients,” Applied Physics Express, Vol. 1, No. 3, 2008, Article ID: 035003.
[5] J. Coutinho, S. Oeberg, V. J. B. Torres, M. Barroso, R. Jones and P. R. Briddon, “Donor-Vacancy Complexes in Ge: Cluster and Supercell Calculations,” Physical Review B, Vol. 73, No. 23, 2006, Article ID: 235213. doi:10.1103/PhysRevB.73.235213
[6] S. Roy and A. Asenov, “Where Do the Dopants Go?” Science, Vol. 309, No. 5733, 2005, pp. 388-390.
[7] V. P. Markevich, “A Comparative Study of Ion Implantation and Irradiation-Induced Defects in Ge Crystals,” Materials Science in Semiconductor Processing, Vol. 9, No. 4-5, 2006, pp. 589-596. doi:10.1016/j.mssp.2006.08.062
[8] P. K. Shukla and A. A. Mamun, “Introduction to Dusty Plasma Physics,” Institute of Physics Publishing, Bristol and Philadelphia, 2002.
[9] W. Masood, H. Rizvi, H. Hasnain and Q. Haque, “Rotation Induced Nonlinear Dispersive Dust Drift Waves Can be the Progenitors of Spokes,” Physics of Plasmas, Vol. 19, No. 3, 2012, Article ID: 032112.
[10] W. Masood, A. M. Mirza and S. Nargis, “Revisiting Coupled Shukla-Varma and Convective Cell Mode in Classical and Quantum Dusty Magnetoplasmas,” Journal of Plasma Physics, Vol. 76, No. 3-4, 2010, pp. 547-552
[11] M. S. Barnes, J. H. Keller, J. C. Forster, J. A. O’Neill and D. K. Coultas, “Transport of Dust Particles in GlowDischarge Plasmas,” Physical Review Letters, Vol. 68, No. 3, 1992, pp. 313-316. doi:10.1103/PhysRevLett.68.313
[12] A. Piel and A. Melzer, “Dusty Plasmas—The State of Understanding from an Experimentalist’s View,” Advances in Space Research, Vol. 29, No. 9, 2002, pp. 1255-1264.
[13] D. V. Lang, “Recalling the Origins of DLTS,” Physica B, Vol. 401-402, No. 1, 2007, pp. 7-9. doi:10.1016/j.physb.2007.08.102
[14] D. V. Lang, “Deep-Level Transient Spectroscopy: A New Method to Characterize Traps in Semiconductors,” Journal of Applied Physics, Vol. 45, No. 7, 1974, pp. 30233032. doi:10.1063/1.1663719
[15] D. V. Lang and L. C. Kimerling, “Observation of Recombination-Enhanced Defect Reactions in Semiconductors,” Physical Review Letters, Vol. 33, No. 8, 1974, pp. 489-492. doi:10.1103/PhysRevLett.33.489
[16] S. Voss, N. A. Stolwijk, H. Bracht, A. N. Larsen and H. Overhof, “Substitutional Zn in SiGe: Deep-Level Transient Spectroscopy and Electron Density Calculations,” Physical Review B, Vol. 68, No. 3, 2003, Article ID: 035208. doi:10.1103/PhysRevB.68.035208
[17] D. S. Day, M. Y. Tsai, B. G. Streetman and D. V. Lang, “Deep-Level-Transient Spectroscopy: System Effects and Data Analysis,” Journal of Applied Physics, Vol. 50, No. 8, 1979, pp. 5093-5098. doi:10.1063/1.326665
[18] S. Q. Wang, F. Lu, Z. Q. Zhu, T. Sekiguchi, H. Okushi, K. Kimura and T. Yao, “Compensating Levels in p-Type ZnSe:N Studied by Optical Deep-Level Transient Spectroscopy,” Physical Review B, Vol. 58, No. 16, pp. 1050210509. doi:10.1103/PhysRevB.58.10502
[19] J.-U. Sachse, J. Weber and H. Lemke, “Deep-Level Transient Spectroscopy of Pd-H Complexes in Silicon,” Physical Review B, Vol. 61, No. 3, 2000, pp. 1924-1934. doi:10.1103/PhysRevB.61.1924
[20] M. Bonitz, C. Henning1 and D. Block, “Complex Plasmas: A Laboratory for Strong Correlations,” Reports on Progress in Physics, Vol. 73, No. 6, 2010, Article ID: 066501. doi:10.1088/0034-4885/73/6/066501
[21] E. K. El-Shewy, M. A. Zahran, K. Schoepf and S. A. Elwakil, “Contribution of Higher Order Dispersion to Nonlinear Dust-Acoustic Solitary Waves in Dusty Plasma with Different Sized Dust Grains and Nonthermal Ions,” Physica Scripta, Vol. 78, No. 2, 2008, Article ID: 025501.
[22] L. Boufendi, M. Ch Jouanny, E. Kovacevic, J. Berndt and M. Mikikian, “Dusty plasma for Nanotechnology,” Journal of Physics D: Applied Physics, Vol. 44, No. 17, 2011, Article ID: 174035. doi:10.1088/0022-3727/44/17/174035
[23] M. Z. Iqbal and N. Zafar, “Study of Alpha-RadiationInduced Deep Levels in p-Type Silicon,” Journal of Applied Physics, Vol. 73, No. 9, 1993, pp. 4240-4247. doi:10.1063/1.352803
[24] E. Gaubas, G. Ju?ka, J. Vaitkus and E. Fretwurst, “Characterization of the Radiation-Induced Defects in Si Detectors by Carrier Transport and Decay Transients,” Nuclear Instruments and Methods in Physics Research A, Vol. 583, No. 1, 2007, pp. 185-188. doi:10.1016/j.nima.2007.08.197
[25] R. M. Keyser and T. W. Raudorf, “Germanium Radiation Detector Manufacturing: Process and Advances,” Nuclear Instruments and Methods in Physics Research A, Vol. 286, No. 3, 1990, pp. 357-363. doi:10.1016/0168-9002(90)90877-9
[26] C.-X. Liu, S. Cheng, H.-T. Guo, W.-N. Li, X.-H. Liu, W. Wei and B. Peng, “Proton-Implanted Optical Planar Waveguides in Yb3+-Doped Silicate Glasses,” Nuclear Instruments and Methods in Physics Research B, 2012, in Press. doi:10.1016/j.nimb.2012.08.004
[27] S. M. C. Miranda, N. Franco, E. Alves and K. Lorenz, “Cd Ion Implantation in AlN,” Nuclear Instruments and Methods in Physics Research B, 2012, in Press. doi:10.1016/j.nimb.2012.08.007

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.