Share This Article:

Increased osteogenesis with hydroxyapatite constructs combined with serially-passaged bone marrow-derived mesenchymal stem cells

Abstract Full-Text HTML Download Download as PDF (Size:1531KB) PP. 133-140
DOI: 10.4236/scd.2012.24018    3,399 Downloads   5,942 Views   Citations


We have previously reported on both the osteogenic potential of hydroxyapatite (HA) combined with bone marrow-derived mesenchymal stem cells (BMSCs) and a method involving osteogenic matrix cell sheet transplantation of BMSCs. In the present study, we assessed the osteogenic potential of serially-passaged BMSCs, both in vitro and in vivo. We also assessed whether an additional cell-loading technique can regain the osteogenic potential of the constructs combined with serially-passaged BMSCs. The present study revealed that passage (P) 1 cells cultured in osteogenic-induced medium showed strong positive staining for alkaline phosphatase (ALP) and Alizarin Red S, whereas P3 cells showed faint staining for ALP, with no Alizarin Red S staining. Staining of P1, P2 and P3 cells were progressively weaker, indicating that the osteogenic potential of the serially-passaged rat BMSCs is lost after P3 in vitro. The in vivo study showed that little bone formation was observed in the HA constructs seeded with P3 cells, 4 weeks after subcutaneous implantation. However, P3 cell/HA constructs which had increased cell-loading showed abundant bone formation within the pores of the HA construct. ALP and osteocalcin mRNA expression in these constructs was significantly higher than that of constructs with regular cell-seeding. The present study indicates that the osteogenic potential of the constructs with serially-passaged BMSCs is increased by additional cell-loading. This method can be applied to cases requiring hard tissue reconstruction, where BMSCs require serial expansion of cells.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Akahane, M. , Ueha, T. , Shimizu, T. , Inagaki, Y. , Kido, A. , Imamura, T. , Kawate, K. and Tanaka, Y. (2012) Increased osteogenesis with hydroxyapatite constructs combined with serially-passaged bone marrow-derived mesenchymal stem cells. Stem Cell Discovery, 2, 133-140. doi: 10.4236/scd.2012.24018.


[1] Owen, M. (1988) Marrow stromal stem cells. Journal of Cell Science, 10, 63-76.
[2] Ohgushi, H. and Caplan, A.I. (1999) Stem cell technology and bioceramics: From cell to gene engineering. Journal of Biomedical Materials Research, 48,913-927. doi:10.1002/(SICI)1097-4636(1999)48:6<913::AID-JBM22>3.0.CO;2-0
[3] Ohgushi, H., Yoshikawa, T., Nakajima, H., Tamai, S., Dohi, Y. and Okunaga, K. (1999) Al2O3 doped apatitewollastonite containing glass ceramic provokes osteogenic differentiation of marrow stromal stem cells. Journal of Biomedical Materials Research, 44, 381-388. doi:10.1002/(SICI)1097-4636(19990315)44:4<381::AID-JBM3>3.0.CO;2-E
[4] Sonal, R., Jackson, J.D., Brusnahan, S.K., O’Kane, B. J. and Sharp, J.G. (2012) Characterization of a mesenchymal stem cell line that differentiates to bone and provides niches supporting mouse and human hematopoietic stem cells. Stem Cell Discovery, 2, 5-14. doi:10.4236/scd.2012.21002
[5] Brazelton, T.R., Rossi, F.M., Keshet, G.I. and Blau, H.M. (2000) From marrow to brain: Expression of neuronal phenotypes in adult mice. Science, 290, 1775-1779. doi:10.1126/science.290.5497.1775
[6] Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W.C., Largaespada, D.A. and Verfaillie, C.M. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41-49. doi:10.1038/nature00870
[7] Krause, D.S. (2002) Plasticity of marrow-derived stem cells. Gene Therapy, 9, 754-758. doi:10.1038/
[8] Ter Brugge, P.J. and Jansen, J.A. (2002) In vitro osteogenic differentiation of rat bone marrow cells subcultured with and without dexamethasone. Tissue Engineering, 8, 321-331. doi:10.1089/107632702753725076
[9] Matsushima, A., Kotobuki, N., Tadokoro, M., Kawate, K., Yajima, H., Takakura, Y. and Ohgushi, H. (2009) In vivo osteogenic capability of human mesenchymal cells cultured on hydroxyapatite and on beta-tricalcium phosphate. Artificial Organs, 33,474-481. doi:10.1111/j.1525-1594.2009.00749.x
[10] Akahane, M., Shigematsu, H., Tadokoro, M., Ueha, T., Matsumoto, T., Tohma, Y., Kido, A., Imamura, T. and Tanaka, Y. (2010) Scaffold-free cell sheet injection results in bone formation. Journal of Tissue Engineering and Regenerative Medicine, 4, 404-411. doi:10.1002/term.259
[11] Nakamura, A., Akahane, M., Shigematsu, H., Tadokoro, M., Morita, Y., Ohgushi, H., Dohi, Y., Imamura, T. and Tanaka, Y. (2010) Cell sheet transplantation of cultured mesenchymal stem cells enhances bone formation in a rat nonunion model. Bone, 46, 418-424. doi:10.1016/j.bone.2009.08.048
[12] Nakamura, A., Dohi, Y., Akahane, M., Ohgushi, H., Nakajima, H., Funaoka, H. and Takakura, Y. (2009) Osteocalcin secretion as an early marker of in vitro osteogenic differentiation of rat mesenchymal stem cells. Tissue Engineering Part C: Methods, 15, 169-180. doi:10.1089/ten.tec.2007.0334
[13] Akahane, M., Ohgushi, H., Yoshikawa, T., Sempuku, T., Tamai, S., Tabata, S. and Dohi, Y. (1999) Osteogenic phenotype expression of allogeneic rat marrow cells in porous hydroxyapatite ceramics. Journal of Bone and Mineral Research, 14, 561-568. doi:10.1359/jbmr.1999.14.4.561
[14] Bianco, P. and Robey, P.G. (2001) Stem cells in tissue engineering. Nature, 414, 118-121. doi:10.1038/35102181
[15] Dong, J., Kojima, H., Uemura, T., Kikuchi, M., Tateishi, T. and Tanaka, J. (2001) In vivo evaluation of a novel porous hydroxyapatite to sustain osteogenesis of transplanted bone marrow-derived osteoblastic cells. Journal of Biomedical Materials Research, 57,208-216. doi:10.1002/1097-4636(200111)57:2<208::AID-JBM1160>3.0.CO;2-N
[16] Petite, H., Viateau, V., Bensaid, W., Meunier, A., de Pollak, C., Bourguignon, M., Oudina, K., Sedel, L. and Guillemin, G. (2000) Tissue-engineered bone regeneration. Nature Biotechnology, 18, 959-963. doi:10.1038/79449
[17] Shigematsu, H., Akahane, M., Dohi, Y., Nakamura, A., Ohgushi, H., Imamura, T. and Tanaka, Y. (2010) Osteogenic potential and histological characteristics of mesenchymal stem cell sheet/hydroxyapatite constructs. The Open Tissue Engineering and Regenerative Medicine Journal, 2, 63-70. doi:10.2174/1875043500902010063
[18] Akahane, M., Nakamura, A., Ohgushi, H., Shigematsu, H., Dohi, Y. and Takakura, Y. (2008) Osteogenic matrix sheet-cell transplantation using osteoblastic cell sheet resulted in bone formation without scaffold at an ectopic site. Journal of Tissue Engineering and Regenerative Medicine, 2, 196-201. doi:10.1002/term.81
[19] Wakitani, S., Imoto, K., Yamamoto, T., Saito, M., Murata, N. and Yoneda, M. (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis and Cartilage, 10, 199-206. doi:10.1053/joca.2001.0504
[20] Ohgushi, H., Kotobuki, N., Funaoka, H., Machida, H., Hirose, M., Tanaka, Y. and Takakura, Y. (2005) Tissue engineered ceramic artificial joint—Ex vivo osteogenic differentiation of patient mesenchymal cells on total ankle joints for treatment of osteoarthritis. Biomaterials, 26, 4654-4661. doi:10.1016/j.biomaterials.2004.11.055
[21] Kawate, K., Yajima, H., Ohgushi, H., Kotobuki, N., Sugimoto, K., Ohmura, T., Kobata, Y., Shigematsu, K., Kawamura, K., Tamai, K. and Takakura, Y. (2006) Tissue-engineered approach for the treatment of steroid-induced osteonecrosis of the femoral head: transplantation of autologous mesenchymal stem cells cultured with beta-tricalcium phosphate ceramics and free vascularized fibula. Artifical Organs, 30, 960-962. doi:10.1111/j.1525-1594.2006.00333.x
[22] M. Akahane, T.U., Shimizu, T., Shigematsu, H., Kido A., Omokawa, S., Kawate, K., Imamura, T. and Y. Tanaka. (2010) Cell Sheet Injection as a technique of osteogenic supply. International Journal of Stem Cells, 3, 138-143.
[23] McCulloch, C.A., Strugurescu, M., Hughes, F., Melcher, A.H. and Aubin, J.E. (1991) Osteogenic progenitor cells in rat bone marrow stromal populations exhibit self-renewal in culture. Blood, 77, 1906-1911.
[24] Aubin, J.E. (1998) Advances in the osteoblast lineage. Biochemistry and Cell Biology, 76, 899-910. doi:10.1139/o99-005
[25] Kadiyala, S., Young, R.G., Thiede, M.A. and Bruder, S.P. (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplantation, 6, 125-134. doi:10.1016/S0963-6897(96)00279-5
[26] Anil Kumar, P.R., Varma, H.K. and Kumary, T.V. (2005) Rapid and complete cellularization of hydroxyapatite for bone tissue engineering. Acta Biomaterialia, 1, 545-552. doi:10.1016/j.actbio.2005.05.002
[27] Ogose, A., Hotta, T., Hatano, H., Kawashima, H., Tokunaga, K., Endo, N. and Umezu, H. (2002) Histological examination of beta-tricalcium phosphate graft in human femur. Journal of Biomedical Materials Research, 63, 601-604. doi:10.1002/jbm.10380
[28] Yamamoto, T., Onga, T., Marui, T. and Mizuno, K. (2000) Use of hydroxyapatite to fill cavities after excision of benign bone tumours. Clinical results. Journal of Bone & Joint Surgery, British Volume, 82, 1117-1120. doi:10.1302/0301-620X.82B8.11194
[29] Schindler, O.S., Cannon, S.R., Briggs, T.W. and Blunn, G.W. (2008) Composite ceramic bone graft substitute in the treatment of locally aggressive benign bone tumours. Journal of Orthopaedic Surgery (Hong Kong), 16, 66-74.

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.