Inkjet-Printed UHF RFID Tags on Renewable Materials

Abstract Full-Text HTML Download Download as PDF (Size:511KB) PP. 79-85
DOI: 10.4236/ait.2012.24010    5,149 Downloads   10,901 Views   Citations

ABSTRACT

Radio frequency identification (RFID) provides great potential for different Internet of Things (IOT) applications. In the future, material choices in these IOT devices will have a huge effect on the environment and thus use of renewable materials is a growing trend. In this paper, passive ultra high frequency (UHF) RFID tags were inkjet-printed directly on wood, paper, and cardboard substrates, and their performance was evaluated by measuring two key properties: threshold power and theoretical read range. According to our measurements, the tags on wood showed read ranges of 7 - 8 meters, the tags on cardboard exhibited read ranges of 4 - 7 meters, and the tags printed on paper showed read ranges of 2 - 7 meters through the global UHF RFID band. According to these results, the performance of these inkjet-printed UHF RFID tags is sufficient for many IOT devices and potential applications e.g. in construction and packaging industry.

Cite this paper

J. Virtanen, J. Virkki, L. Ukkonen and L. Sydänheimo, "Inkjet-Printed UHF RFID Tags on Renewable Materials," Advances in Internet of Things, Vol. 2 No. 4, 2012, pp. 79-85. doi: 10.4236/ait.2012.24010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Commission of the European Communities, “Internet of Things—An Action Plan for Europe,” 2009. http://ec.europa.eu/information_society/policy/rfid/documents/commiot2009.pdf
[2] R. van Kranenburg, “Internet of Things Europe,” Conference Report, 2010. http://ec.europa.eu/information_society/policy/rfid/documents/iotconferencereport2010.pdf
[3] GS1, “Regulatory Status for Using RFID in the UHF Spectrum,” 2012. http://www.gs1.org/docs/epcglobal/UHF_Regulations.pdf
[4] M. Dobkin, “The RF in RFID,” Wiley, New York, 2010.
[5] K. Finkenzeller, “RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near Field Communication,” Wiley, New York, 2010. doi:10.1002/9780470665121
[6] GS-1, “EPC Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz to 960 MHz,” 2012. http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf
[7] S. Merilampi, T. Bj?rninen, A. Vuorim?ki, L. Ukkonen, P. Ruuskanen and L. Syd?nheimo, “The Effect of Conductive Ink Layer Thickness on the Functioning of Printed UHF RFID Antennas,” RFID—A Unique Radio Innovation for the 21st Century, Vol. 98, No. 9, 2010, pp. 1610-1619.
[8] T. Bj?rninen, S. Merilampi, L. Ukkonen, P. Ruuskanen and L. Syd?nheimo, “A Performance Comparison of Silver Ink and Copper Conductors for Microwave Applications,” IET Microwaves, Antennas & Propagation, Vol. 4, No. 9, 2010, pp. 1224-1231. doi:10.1049/iet-map.2009.0241
[9] S. Merilampi, T. Bj?rninen, L. Ukkonen, P. Ruuskanen and L. Syd?nheimo, “Characterization of UHF RFID Tags Fabricated Directly on Convex Surfaces by Pad Printing,” The International Journal of Advanced Manufacturing Technology, Vol. 53, No. 5, 2011, pp. 577-591. doi:10.1007/s00170-010-2869-y
[10] G. Shaker, S. Safavi-Naeini and M. M. Tentzeris, “Inkjet Printing of Ultrawideband (UWB) Antennas on Paper-Based Substrates,” IEEE Antennas and Wireless Propagation Letters, Vol. 10, 2011, pp. 111-114. doi:10.1109/LAWP.2011.2106754
[11] L. Yang, A. Rida, R. Vyas and M. M. Tentzeris, “RFID Tag and RF Structures on a Paper Substrate Using Inkjet-Printing Technology,” IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2007, pp. 2894-2901. doi:10.1109/TMTT.2007.909886
[12] M. A Laughton and D. F. Warne, Eds., “Electrical Engineer’s Reference Book,” Elsevier, New York, 2003.
[13] J. Fraden, “Handbook of Modern Sensors—Physics, Designs and Applications,” Springer-Verlag, Berlin, 2004.
[14] D. K. Cheng, “Fundamentals of Engineering Electromagnetics,” Addison-Wesley, New York, 1993.
[15] M. Prudenziati, Ed., “Thick Film Sensors,” Elsevier, New York, 1994.
[16] K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer and S. Mahajan, Eds., “Encyclopedia of Materials—Science and Technology,” Vol. 1-11, Elsevier, New York, 2001.
[17] C. F. Coombs, “Coombs’ Printed Circuits Handbook,” McGraw-Hill Publishing, New York, 2001.
[18] Forest Products Laboratory US Department of Agriculture, “Wood Handbook—Wood as an Engineering Material,” 2001.
[19] E. A. Campo, “Selection of Polymeric Materials—How to Select Design Properties from Different Standard,” William Andrew Publishing/Plastics Design Library, Norwich, 2008.
[20] G. Marrocco, “The Art of UHF RFID Antenna Design: Impedance-Matching and Size-Reduction Techniques,” IEEE Antennas and Propagation Magazine, Vol. 50, No. 1, 2008, pp. 66-79. doi:10.1109/MAP.2008.4494504
[21] Fujifilm, “Dimatix Materials Printer DMP-2800,” Product Overview, 2012. http://www.fujifilm.us/products/industrial_inkjet_printheads/deposition-products/dmp-2800/index.html
[22] Harima, “NPS-JL Silver Nanoparticle Ink,” NanoPaste Series, Metal Paste for Thin Film Formation, Datasheet, 2012. http://www.harima.co.jp/en/products/pdf/16-17e.pdf

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.