Share This Article:

Evolution of Morphology of Nano-Scale CuO Grown on Copper Metal Sheets in 5 wt% NaCl Solution of Spray Fog Environment

Abstract Full-Text HTML Download Download as PDF (Size:2167KB) PP. 278-283
DOI: 10.4236/jsemat.2012.24042    4,898 Downloads   8,483 Views   Citations

ABSTRACT

Nano-scale copper oxide with various morphologies is synthesized via the thermal oxide method and growth in a 5 wt% NaCl solution of spray fog environment. The nano-scale copper oxide is grown on copper metal sheets via the thermal oxide method at 650℃ for 60 minutes. Nano-scale copper oxide grains and nanowires are induced on copper metal sheets then placed in 5 wt% NaCl solution of salt spray fog environment. Significant changes in particle size and mor-phology are observed with increasing salt spray fog treatement time. The morphology of nano-scale copper oxide varies from nanograins to nanowires, Ctahedron, and icositetrahedron. The morphologies and structures of the obtained nano-scale copper oxide are investigated by scanning electron microscopy and energy-dispersive spectroscopy. Possible growth mechanisms are discussed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

H. Chen, T. Chiang and M. Wu, "Evolution of Morphology of Nano-Scale CuO Grown on Copper Metal Sheets in 5 wt% NaCl Solution of Spray Fog Environment," Journal of Surface Engineered Materials and Advanced Technology, Vol. 2 No. 4, 2012, pp. 278-283. doi: 10.4236/jsemat.2012.24042.

References

[1] M. F. Al-Kuhaili, “Characterization of Copper Oxide Thin Films Deposited by the Thermal Evaporation of Cuprous Oxide (Cu2O),” Vacuum, Vol. 82, No. 6, 2008, pp. 623- 629. doi:10.1016/j.vacuum.2007.10.004
[2] S. Ohya, S. Kaneco, H. Katsumata, T. Suzuki and K. Ohta, “Electrochemical Reduction of CO2 in Methanol with Aid of CuO and Cu2O,” Catalysis Today, Vol. 148, No. 3-4, 2009, pp. 329-334. doi:10.1016/j.cattod.2009.07.077
[3] F. Teng, W. Q. Yao, Y. F. Zheng, Y. T. Ma, Y. Teng, T. G. Xu, S. H. Liang and Y. F. Zhu, “Synthesis of Flower- Like CuO Nanostructures as a Sensitive Sensor for Catalysis,” Sensor and Actuators B: Chemical, Vol. 134, No. 2, 2008, pp. 761-768. doi:10.1016/j.snb.2008.06.023
[4] S. Anandan, X. G. Wen and S. H. Yang, “Room Temperature Growth of CuO Nanorod Arrays on Copper and Their Application as a Cathode in Dye-Sensitized Solar Cells,” Materials Chemistry and Physics, Vol. 93, No. 1, 2005. pp. 35-40. doi:10.1016/j.matchemphys.2005.02.002
[5] R. P. Wijesundera, “Fabrication of the CuO/Cu2O Hetero- junction Using an Electrodeposition Technique for Solar Cell Applications,” Semiconductor Science and Technology, Vol. 25, No. 4, 2010, p. 045015. doi:10.1088/0268-1242/25/4/045015
[6] Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim, V. B. C. Tan, J. T. L. Thong and C. H. Sow, “Large-Scale Synthesis and Field Emission Properties of Vertically Oriented CuO Nanowire Films,” Nanotechnology, Vol. 16, No. 1, 2005, pp. 88-92. doi:10.1088/0957-4484/16/1/018
[7] F. Bayansal, S. Kahraman, G. Cankaya, H. A. Cetinkara, H. S. Güder and H. M. Cakmak, “Growth of Homogenous CuO Nano-Structured Thin Films by a Simple Solution Method,” Journal of Alloys and Compounds, Vol. 509, No. 5, 2011, pp. 2094-2098. doi:10.1016/j.jallcom.2010.10.146
[8] M. Kaur, K. P. Muthe, S. K. Despande, S. Choudhury, J. B. Singh, N. Verma, S. K. Gupta and J. V. Yakhmi, “Growth and Branching of CuO Nanowires by Thermal Oxidation of Copper,” Journal of Crystal Growth, Vol. 289, No. 2, 2006, pp. 670-675. doi:10.1016/j.jcrysgro.2005.11.111
[9] G. N. Rao, Y. D. Yao and J. W. Chen, “Evolution of Size, Morphology, and Magnetic Properties of CuO Nanoparticles by Thermal Annealing,” Journal of Applied Physics, Vol. 105, No. 9, 2009, p. 093901.
[10] Z. P. Cheng, J. M. Xu, H. Zhong, X. Z. Chu and J. Song, “Hydrogen Peroxide-Assisted Hydrothermal Synthesis of Hierarchical CuO Flower-Like Nanostructures,” Materials Letters, Vol. 65, No. 13, 2011, pp. 2047-2050. doi:10.1016/j.matlet.2011.04.021
[11] S. W. Choi, J. Y. Park and S. S. Kim, “Growth Behavior and Sensing Properties of Nanograins in CuO Nanofibers,” Chemical Engineering Journal, Vol. 172, No. 1, 2011, pp. 550-556. doi:10.1016/j.cej.2011.05.100
[12] A. P. Moura, L. S. Cavalcante, J. C. Sczancoski, D. G. Stroppa, E. C. Paris and A. J. Ramirez, “Structure and Growth Mechanism of CuO Plates Obtained by Micro- wave-Hydrothermal without Surfactants,” Advanced Powder Technology, Vol. 21, No. 2, 2010, pp. 197-202. doi:10.1016/j.apt.2009.11.007
[13] W. Y. Zhao, W. Y. Fu, H. B. Yang, C. J. Tian, R. X. Ge, C. J. Wang, Z. L. Liu, Y. Y. Zhang, M. H. Li and Y. X. Li, “Shape-Controlled Synthesis of Cu2O Microcrystals by Electrochemical Method,” Applied Surface Science, Vol. 256, No. 7, 2010, pp. 2269-2275. doi:10.1016/j.apsusc.2009.10.051
[14] R. S. Wanger, W. C. Ellis, “Vapor-Liquid-Solid Mecha- nism of Single Crystal Growth,” Applied Physics Letters, Vol. 4, No. 5, 1964, pp. 89-90. doi:10.1063/1.1753975
[15] C. H. Xu, C. H. Woo and S. Q. Shi, “Formation of CuO Nanowires on Cu Foil,” Chemical Physics Letters, Vol. 399, No. 1-3, 2004, pp. 62-66. doi:10.1016/j.cplett.2004.10.005
[16] B. Guo, P. Zhang, Y. P. Jin and S. K. Cheng, “Effects of Alternating Magnetic Field on the Corrosion Rate and Corrosion Products of Copper,” Rare Metals, Vol. 27, No. 3, 2008, pp. 324-328. doi:10.1016/S1001-0521(08)60138-2
[17] M. Y. Hu, K. G. Zhou, C. G. Wang and R. Xu, “Cl? In- duced Synthesis of Submicron Cubic Copper Particles in Solution,” Journal of University of Science and Technol- ogy Beijing, Mineral, Metallurgy, Material, Vol. 15, No. 5, 2008, pp. 659-664. doi:10.1016/S1005-8850(08)60123-1

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.