Evolution of Morphology of Nano-Scale CuO Grown on Copper Metal Sheets in 5 wt% NaCl Solution of Spray Fog Environment


Nano-scale copper oxide with various morphologies is synthesized via the thermal oxide method and growth in a 5 wt% NaCl solution of spray fog environment. The nano-scale copper oxide is grown on copper metal sheets via the thermal oxide method at 650℃ for 60 minutes. Nano-scale copper oxide grains and nanowires are induced on copper metal sheets then placed in 5 wt% NaCl solution of salt spray fog environment. Significant changes in particle size and mor-phology are observed with increasing salt spray fog treatement time. The morphology of nano-scale copper oxide varies from nanograins to nanowires, Ctahedron, and icositetrahedron. The morphologies and structures of the obtained nano-scale copper oxide are investigated by scanning electron microscopy and energy-dispersive spectroscopy. Possible growth mechanisms are discussed.

Share and Cite:

Chen, H. , Chiang, T. and Wu, M. (2012) Evolution of Morphology of Nano-Scale CuO Grown on Copper Metal Sheets in 5 wt% NaCl Solution of Spray Fog Environment. Journal of Surface Engineered Materials and Advanced Technology, 2, 278-283. doi: 10.4236/jsemat.2012.24042.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. F. Al-Kuhaili, “Characterization of Copper Oxide Thin Films Deposited by the Thermal Evaporation of Cuprous Oxide (Cu2O),” Vacuum, Vol. 82, No. 6, 2008, pp. 623- 629. doi:10.1016/j.vacuum.2007.10.004
[2] S. Ohya, S. Kaneco, H. Katsumata, T. Suzuki and K. Ohta, “Electrochemical Reduction of CO2 in Methanol with Aid of CuO and Cu2O,” Catalysis Today, Vol. 148, No. 3-4, 2009, pp. 329-334. doi:10.1016/j.cattod.2009.07.077
[3] F. Teng, W. Q. Yao, Y. F. Zheng, Y. T. Ma, Y. Teng, T. G. Xu, S. H. Liang and Y. F. Zhu, “Synthesis of Flower- Like CuO Nanostructures as a Sensitive Sensor for Catalysis,” Sensor and Actuators B: Chemical, Vol. 134, No. 2, 2008, pp. 761-768. doi:10.1016/j.snb.2008.06.023
[4] S. Anandan, X. G. Wen and S. H. Yang, “Room Temperature Growth of CuO Nanorod Arrays on Copper and Their Application as a Cathode in Dye-Sensitized Solar Cells,” Materials Chemistry and Physics, Vol. 93, No. 1, 2005. pp. 35-40. doi:10.1016/j.matchemphys.2005.02.002
[5] R. P. Wijesundera, “Fabrication of the CuO/Cu2O Hetero- junction Using an Electrodeposition Technique for Solar Cell Applications,” Semiconductor Science and Technology, Vol. 25, No. 4, 2010, p. 045015. doi:10.1088/0268-1242/25/4/045015
[6] Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim, V. B. C. Tan, J. T. L. Thong and C. H. Sow, “Large-Scale Synthesis and Field Emission Properties of Vertically Oriented CuO Nanowire Films,” Nanotechnology, Vol. 16, No. 1, 2005, pp. 88-92. doi:10.1088/0957-4484/16/1/018
[7] F. Bayansal, S. Kahraman, G. Cankaya, H. A. Cetinkara, H. S. Güder and H. M. Cakmak, “Growth of Homogenous CuO Nano-Structured Thin Films by a Simple Solution Method,” Journal of Alloys and Compounds, Vol. 509, No. 5, 2011, pp. 2094-2098. doi:10.1016/j.jallcom.2010.10.146
[8] M. Kaur, K. P. Muthe, S. K. Despande, S. Choudhury, J. B. Singh, N. Verma, S. K. Gupta and J. V. Yakhmi, “Growth and Branching of CuO Nanowires by Thermal Oxidation of Copper,” Journal of Crystal Growth, Vol. 289, No. 2, 2006, pp. 670-675. doi:10.1016/j.jcrysgro.2005.11.111
[9] G. N. Rao, Y. D. Yao and J. W. Chen, “Evolution of Size, Morphology, and Magnetic Properties of CuO Nanoparticles by Thermal Annealing,” Journal of Applied Physics, Vol. 105, No. 9, 2009, p. 093901.
[10] Z. P. Cheng, J. M. Xu, H. Zhong, X. Z. Chu and J. Song, “Hydrogen Peroxide-Assisted Hydrothermal Synthesis of Hierarchical CuO Flower-Like Nanostructures,” Materials Letters, Vol. 65, No. 13, 2011, pp. 2047-2050. doi:10.1016/j.matlet.2011.04.021
[11] S. W. Choi, J. Y. Park and S. S. Kim, “Growth Behavior and Sensing Properties of Nanograins in CuO Nanofibers,” Chemical Engineering Journal, Vol. 172, No. 1, 2011, pp. 550-556. doi:10.1016/j.cej.2011.05.100
[12] A. P. Moura, L. S. Cavalcante, J. C. Sczancoski, D. G. Stroppa, E. C. Paris and A. J. Ramirez, “Structure and Growth Mechanism of CuO Plates Obtained by Micro- wave-Hydrothermal without Surfactants,” Advanced Powder Technology, Vol. 21, No. 2, 2010, pp. 197-202. doi:10.1016/j.apt.2009.11.007
[13] W. Y. Zhao, W. Y. Fu, H. B. Yang, C. J. Tian, R. X. Ge, C. J. Wang, Z. L. Liu, Y. Y. Zhang, M. H. Li and Y. X. Li, “Shape-Controlled Synthesis of Cu2O Microcrystals by Electrochemical Method,” Applied Surface Science, Vol. 256, No. 7, 2010, pp. 2269-2275. doi:10.1016/j.apsusc.2009.10.051
[14] R. S. Wanger, W. C. Ellis, “Vapor-Liquid-Solid Mecha- nism of Single Crystal Growth,” Applied Physics Letters, Vol. 4, No. 5, 1964, pp. 89-90. doi:10.1063/1.1753975
[15] C. H. Xu, C. H. Woo and S. Q. Shi, “Formation of CuO Nanowires on Cu Foil,” Chemical Physics Letters, Vol. 399, No. 1-3, 2004, pp. 62-66. doi:10.1016/j.cplett.2004.10.005
[16] B. Guo, P. Zhang, Y. P. Jin and S. K. Cheng, “Effects of Alternating Magnetic Field on the Corrosion Rate and Corrosion Products of Copper,” Rare Metals, Vol. 27, No. 3, 2008, pp. 324-328. doi:10.1016/S1001-0521(08)60138-2
[17] M. Y. Hu, K. G. Zhou, C. G. Wang and R. Xu, “Cl? In- duced Synthesis of Submicron Cubic Copper Particles in Solution,” Journal of University of Science and Technol- ogy Beijing, Mineral, Metallurgy, Material, Vol. 15, No. 5, 2008, pp. 659-664. doi:10.1016/S1005-8850(08)60123-1

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.