Share This Article:

Direct Decomposition of NO into N2 and O2 Over C-type Cubic Y2O3-Tb4O7-ZrO2

Abstract Full-Text HTML Download Download as PDF (Size:453KB) PP. 733-738
DOI: 10.4236/msa.2012.310107    3,619 Downloads   5,723 Views   Citations

ABSTRACT

Catalytic activities for direct NO decomposition were investigated over C-type cubic Y2O3–Tb4O7–ZrO2 prepared by a coprecipitation method. The NO decomposition activity was enhanced by partial substitution of the yttrium sites with terbium in a (Y0.97Zr0.03)2O3.03 catalyst, which shows high NO decomposition activity. Among the catalysts synthesized in this study, the (Y0.67Tb0.30Zr0.03)2O3.33 catalyst exhibited the highest NO decomposition activity; NO conversion to N2 was as high as 67% at 900℃ in the absence of O2 (NO/He atmosphere), and a relatively high conversion ratio was observed even in the presence of O2 or CO2, compared with those obtained over conventional direct NO decomposition catalysts. These results indicate that the C-type cubic Y2O3–Tb4O7–ZrO2 catalyst is a new potential candidate for direct NO decomposition.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

T. Masui, S. Uejima, S. Tsujimoto and N. Imanaka, "Direct Decomposition of NO into N2 and O2 Over C-type Cubic Y2O3-Tb4O7-ZrO2," Materials Sciences and Applications, Vol. 3 No. 10, 2012, pp. 733-738. doi: 10.4236/msa.2012.310107.

References

[1] Z. Liu and S. I. Woo, “Recent Advances in Catalytic DeNOx Science and Technology,” Catalysis Reviews: Science and Engineering, Vol. 48, No. 1, 2006, pp. 43-89.doi:10.1080/01614940500439891
[2] M. Iwamoto, H. Yahiro, K. Tanda, N. Mizuno, Y. Mine and S. Kagawa, “Removal of Nitrogen Monoxide through a Novel Catalytic Process. 1. Decomposition on Excessively Copper Ion Exchanged ZSM-5 Zeolites,” The Journal of Physical Chemistry, Vol. 95, No. 9, 1991, pp. 3727-3730. doi:10.1021/j100162a053
[3] B. L. Trout, A. K. Chakraborty and A. T. Bell, “Analysis of the Thermochemistry of NOx Decomposition over CuZSM-5 Based on Quantum Chemical and Statistical Mechanical Calculations,” The Journal of Physical Chemistry, Vol. 100, No. 44, 1996, pp. 17582-17592.doi:10.1021/jp961470b
[4] Y. Teraoka, T. Harada and S. Kagawa, “Reaction Mechanism of Direct Decomposition of Nitric Oxide over Co- and Mn-Based Perovskite-Type Oxides,” Journal of the Chemical Society, Faraday Transactions, Vol. 94, No. 13, 1998, pp. 1887-1891. doi:10.1039/a800872h
[5] T. Ishihara, M. Ando, K. Sada, K. Takiishi, K. Yamada, H. Nishiguchi and Y. Takita, “Direct Decomposition of NO into N2 and O2 over La(Ba)Mn(In)O3 Perovskite Oxide,” Journal of Catalysis, Vol. 220, No. 1, 2003, pp. 104-114. doi:10.1016/S0021-9517(03)00265-3
[6] H. Iwakuni, Y. Shinmyou, H. Yano, H. Matsumoto and T. Ishihara, “Direct Decomposition of NO into N2 and O2 on BaMnO3-Based Perovskite Oxides,” Applied Catalysis B: Environmental, Vol. 74, No. 3-4, 2007, pp. 299-306.doi:10.1016/j.apcatb.2007.02.020
[7] M. Haneda, Y. Kintaichi, N. Bion and H. Hamada, “Alkali Metal-doped Cobalt Oxide Catalysts for NO Decomposition,” Applied Catalysis B: Environmental, Vol. 46, No. 3, 2003, pp. 473-482. doi:10.1016/S0926-3373(03)00287-X
[8] S. Xie, G. Mestl, M. P. Rosynek and J. H. Lunsford, “Decomposition of Nitric Oxide over Barium Oxide Supported on Magnesium Oxide. 1. Catalytic Results and in Situ Raman Spectroscopic Evidence for a Barium-Nitro Intermediate,” Journal of the American Chemical Society, Vol. 119, No. 42, 1997, pp. 10186-10191.doi:10.1021/ja970809k
[9] Z. Liu, J. Hao, L. Fu and T. Zhu, “Study of Ag/La0.6Ce0.4CoO3 Catalysts for Direct Decomposition and Reduction of Nitrogen Oxides with Propene in the Presence of Oxygen,” Applied Catalysis B: Environmen- tal, Vol. 44, No. 4, 2003, pp. 355-370.doi:10.1016/S0926-3373(03)00103-6
[10] Y. Teraoka, K. Torigoshi, H. Yamaguchi, T. Ikeda and S. Kagawa, “Direct Decomposition of Nitric Oxide over Stannate Pyrochlore Oxides: Relationship between Solid-State Chemistry and Catalytic Activity,” Journal of Molecular Catalysis A: Chemical, Vol. 155, No. 1-2, 2000, pp. 73-80. doi:10.1016/S1381-1169(99)00320-9
[11] S. Iwamoto, R. Takahashi and M. Inoue, “Direct Decomposition of Nitric Oxide over Ba Catalysts Supported on CeO2-Based Mixed Oxides,” Applied Catalysis B: Environmental, Vol. 70, No. 1-4, 2007, pp. 146-150.doi:10.1016/j.apcatb.2006.01.016
[12] H. Iwakuni, Y. Shinmyou, H. Matsumoto and T. Ishihara, “Direct Decomposition of NO into N2 and O2 on SrFe0.7Mg0.3O3 Perovskite Oxide,” Bulletin of the Chemical Society of Japan, Vol. 80, No. 10, 2007, pp. 2039- 2046. doi:10.1246/bcsj.80.2039
[13] T. Ishihara, Y. Shinmyou, K. Goto, N. Nishiyama, H. Iwakuni and H. Matsumoto, “NO Decomposition on Ruddlesden-Popper-Type Oxide, Sr3Fe2O7, Doped with Ba and Zr,” Chemistry Letters, Vol. 37, No. 3, 2008, pp. 318- 319. doi:10.1246/cl.2008.318
[14] H. Iwakuni, Y. Shinmyou, H. Yano, K. Goto, H. Matsumoto and T. Ishihara, “Effects of Added CO2 and H2 on the Direct Decomposition of NO over BaMnO3-Based Perovskite Oxide,” Bulletin of the Chemical Society of Japan, Vol. 81, No. 9, 2008, pp. 1175-1182.doi:10.1246/bcsj.81.1175
[15] Y. Teraoka, K. Torigoshi and S. Kagawa, “Inhibition of NO Decomposition Activity of Perovskite-Type Oxides by Coexisting Carbon Dioxide,” Bulletin of the Chemical Society of Japan, Vol. 74, No. 6, 2001, pp. 1161-1162.doi:10.1246/bcsj.74.1161
[16] K. Goto, H. Matsumoto and T. Ishihara, “Direct Decomposition of NO on Ba/Ba-Y-O Catalyst,” Topics in Catalysis, Vol. 52, No. 13-20, 2009, pp. 1776-1780.doi:10.1007/s11244-009-9337-7
[17] T. Ishihara and K. Goto, “Direct Decomposition of NO over BaO/Y2O3 Catalyst,” Catalysis Today, Vol. 164, No. 1, 2011, pp. 484-488. doi:10.1016/j.cattod.2010.12.005
[18] K. Goto and T. Ishihara, “Direct Decomposition of NO into N2 and O2 over Ba3Y3.4Sc0.6O9,” Applied Catalysis A: General, Vol. 409-410, No. 1, 2011, pp. 66-73.doi:10.1016/j.apcata.2011.09.027
[19] G. Adachi and N. Imanaka, “The Binary Rare Earth Oxides,” Chemical Reviews, Vol. 98, No. 4, 1998, pp. 1479- 1514. doi:10.1021/cr940055h
[20] N. Imanaka, T. Masui and H. Masaki, “Direct Decomposition of Nitric Oxide over C-Type Cubic(Gd1–x–yYxBay)2O3–y Solid Solutions,” Advanced Materials, Vol. 19, No. 21, 2007, pp. 3660-3663. doi:10.1002/adma.200602323
[21] H. Masaki, T. Masui and N. Imanaka, “Direct Decomposition of Nitric Oxide into Nitrogen and Oxygen over C-Type Cubic Y2O3-ZrO2 Solid Solutions,” Journal of Alloys and Compounds, Vol. 451, No. 1-2, 2008, pp. 406- 409. doi:10.1016/j.jallcom.2007.04.158
[22] N. Imanaka and T. Masui, “Advanced Materials for Environmental Catalysts,” The Chemical Record, Vol. 9, No. 1, 2009, pp. 40-50. doi:10.1002/tcr.20167
[23] S. Tsujimoto, K. Mima, T. Masui and N. Imanaka, “Direct Decomposition of NO on C-Type Cubic Rare Earth Oxides Based on Y2O3,” Chemistry Letters, Vol. 39, No. 5, 2010, pp. 456-457. doi:10.1246/cl.2010.456
[24] S. Tsujimoto, X. Wang, T. Masui and N. Imanaka, “Direct Decomposition of NO into N2 and O2 on C-type Cubic Y2O3-ZrO2 and Y2O3-ZrO2-BaO,” Bulletin of the Chemical Society of Japan, Vol. 84, No. 7, 2011, pp. 807-811. doi:10.1246/bcsj.20100360
[25] S. Tsujimoto, C. Nishimura, T. Masui and N. Imanaka, “Coexisting Gas-Resistant C-type Cubic Yb2O3-Tb4O7 Catalysts for Direct NO Decomposition,” Chemistry Letters, Vol. 40, No. 7, 2011, pp. 708-710. doi:10.1246/cl.2011.708
[26] N. Imanaka and T. Masui, “Advances in Direct NOx Decomposition Catalysts,” Applied Catalysis A: General, Vol. 431-432, No. 1, 2012, pp. 1-8.doi:10.1016/j.apcata.2012.02.047
[27] R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Crystallographica Section A, Vol. 32, No. 5, 1976, pp. 751-767. doi:10.1107/S0567739476001551

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.