Facile Synthesis and Characterization of Nanoporous NiO with Folic Acid as Photodegredation Catalyst for Congo Red

Abstract

In this study nanoporous NiO was prepared using Ni(CH3COO)2,4H2O, folic acid and water as starting material, template and solvent respectively, by sol gel method followed by calcination at 400℃. The solid product was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM) Fourier transform infrared (FT-IR) and photoluminescence (PL) techniques. The particle size of the nanoparticles estimated by XRD was in good agreement with the particle size obtained by TEM analysis (4-5nm). It was also found that the prepared nanoporous NiO show very good activity for photodegredation of dye organic pollutants such as Congo red (91%) during 1.5 hours.

Share and Cite:

F. Farzaneh and S. Haghshenas, "Facile Synthesis and Characterization of Nanoporous NiO with Folic Acid as Photodegredation Catalyst for Congo Red," Materials Sciences and Applications, Vol. 3 No. 10, 2012, pp. 697-703. doi: 10.4236/msa.2012.310102.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Y. Kim, J. Y. Kim, S. H. Lee, H. W. Shim, S. H. Lee, E. K. Suh and K. S. Nahma, “Characterization of ZnO Needle-Shaped Nanostructures Grown on NiO Catalyst Coated Si Substrates,” Synthetic Metals, Vol. 144, No. 1, 2004, pp. 61-68. doi:10.1016/j.synthmet.2004.01.010
[2] D. S. Wang, R. Xu, X. Wang and Y. D. Li, “NiO Nanorings and Their Unexpected Catalytic Property for CO Oxidation,” Nanotechnology, Vol. 17, No. 4, 2006, pp. 979-983. doi:10.1088/0957-4484/17/4/023
[3] M. A. Gondal, M. N. Sayeed and Z. Seddigi, “Laser Enhanced Photo-Catalytic Removal of Phenol from Water Usingp-Type NiO Semiconductor Catalyst,” Journal of Hazardous Materials, Vol. 155, No. 1-2, 2008, pp. 83-89.doi:10.1016/j.jhazmat.2007.11.066
[4] J. Bandara and H. Weerasinghe, “Solid-State Dye-Sensitized Solar Cell with p-Type NiO as a Hole Collector,” Solar Energy Materials and Solars Cells, Vol. 85, No. 3, 2005, pp. 385-390. doi:10.1016/j.solmat.2004.05.010
[5] I. Hotovy, V. Rehacek, P. Siciliano, S. Capone and L. Spiess, “Sensing Characteristics of NiO Thin Films as NO2 Gas Sensor,” Thin Solid Films, Vol. 418, No. 1, 2002, pp. 9-15.
[6] Y. M. Lee, C.-H. Hsu and H.-W. Chen, “Structural, Optical, and Electrical Properties of p-Type NiO Films and Composite TiO2/NiO Electrodes for Solid-State Dye- Sensitized Solar Cells,” Applied Surface Science, Vol. 255, No. 8, 2009, pp. 4658-4663.doi:10.1016/j.apsusc.2008.12.014
[7] Y. G. Wang and X. G. Zhang, “Enhanced Electrochemical Capacitance of NiO Loaded on TiO2 Nanotubes,” Journal of the Electrochemical Society, Vol. 152, No. 4, 2005, pp. A671-A676. doi:10.1149/1.1864392
[8] G. A. Niklasson and C. G. Granqvist, “Electrochromics for Smart Windows: Thin Films of Tungsten Oxide and Nickel Oxide, and Devices Based on These,” Journal of Materials Chemistry, Vol. 17, No. 2, 2007, pp. 127-156.doi:10.1039/b612174h
[9] F. Li, H. Y. Chen, C. M. Wang and K. A. Hu, “A Novel Modified NiO Cathode for Molten Carbonate Fuel Cells,” Journal of Electroanalytical Chemistry, Vol. 531, No. 1, 2002, pp. 53-60. doi:10.1016/S0022-0728(02)01019-7
[10] S. G. Kim, S. P. Yoon, J. Han, S. W. Nam, T. H. Lim, I. H. Oh and S. A. Hong, “A Study on the Chemical Stability and Electrode Performance of Modified NiO Cathodes for Molten Carbonate Fuel Cells,” Electrochimica Acta, Vol. 49, No. 19, 2004, pp. 3081-3089.doi:10.1016/j.electacta.2004.01.027
[11] Y. Wang, J. Zhu, X. Yang, L. Lu and X. Wang, “Preparation of NiO Nanoparticles and Their Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate,” Thermochimica Acta, Vol. 437, No. 1-2, 2005, pp. 106- 109. doi:10.1016/j.tca.2005.06.027
[12] X. Li, X. Zhang, Z. Li and Y. Qian, “Synthesis and Characteristics of NiO Nanoparticles by Thermal Decomposition of Nickel Dimethylglyoximate Rods,” Solid State Communications, Vol. 137, No. 11, 2006, pp. 581-584.doi:10.1016/j.ssc.2006.01.031
[13] D. Y. Han, H. Y. Yang, C. B. Shen, X. Zhou and F. H. Wang, “Synthesis and Size control of NiO Nanoparticles by Water-in-Oil Microemulsion,” Powder Technology, Vol. 147, No. 1-3, 2004, pp. 113-116. doi:10.1016/j.powtec.2004.09.024
[14] X. Y. Deng and Z. Chen, “Preparation of Nano-NiO by Ammonia Precipitation and Reaction in Solution and Competitive Balance,” Materials Letters, Vol. 58, No. 3- 4, 2004, pp. 276-280. doi:10.1016/S0167-577X(03)00469-5
[15] X. Xin, Z. Lu, B. Zhou, X. Huang, R. Zhu, X. Sha, Y. Zhang and W. Su, “Effect of Synthesis Conditions on the Performance of Weakly Agglomerated Nanocrysalline NiO,” Journal of Alloys and Compound, Vol. 427, No. 1- 2, 2007, pp. 251-255. doi:10.1016/j.jallcom.2006.02.064
[16] A. Dierstein, H. Natter, F. Meyer, H. O. Stephan, C. Kropf and R. Hempelmann, “Electrochemical Deposition under Oxidizing Conditions (EDOC): A New Synthesis for Nanocrystalline Metal Oxides,” Scripta Materialia, Vol. 44, No. 8-9, 2001, pp. 2209-2212.doi:10.1016/S1359-6462(01)00906-X
[17] D. J. Seo, S. B. Park, Y. C. Kang and K. L. Choy, “Formation of ZnO, MgO and NiO Nanoparticles from Aqueous Droplets in Flame Reactor,” Journal of Nanoparticle Research, Vol. 5, No. 3-4, 2003, pp. 199-210.doi:10.1023/A:1025563031595
[18] C. Lin, S. A. Al-Muhtaseb and J. A. Ritter, “Thermal Treatment of Sol-Gel Derived Nickel Oxide Xerogels,” Journal of Sol-Gel Science and Technology, Vol. 28, No. 1, 2003, pp. 133-141. doi:10.1023/A:1025653607374
[19] Y. R. Park and K. J. Kim, “Sol-Gel Preparation and Optical Characterization of NiO and Ni1?xZnxO Thin Films,” Journal of Crystal Growth, Vol. 258, No. 3-4, 2003, pp. 380-384. doi:10.1016/S0022-0248(03)01560-4
[20] Y. Wang, C. Ma, X. Sun and H. Li, “Preparation of Nanocrystalline Metal Oxide Powders with the Surfactant-Mediated Method,” Inorganic Chemistry Communications, Vol. 5, No. 10, 2002, pp. 751-755. doi:10.1016/S1387-7003(02)00546-4
[21] G. Schmid, “Large Clusters and Colloids. Metals in the Embryonic State,” Chemical Reviews, Vol. 92, No. 8, 1992, pp. 1709-1727. doi:10.1021/cr00016a002
[22] L. Brus, “Capped Nanometer Silicon Electronic Materials, Capped Nanometer Silicon Electronic Materials,” Advanced Materials, Vol. 5, No. 4, 1993, pp. 286-288.doi:10.1002/adma.19930050414
[23] B. G. Ershov, E. Janata and A. Henglein, “Growth of Silver Particles in Aqueous Solution Long-Lived Magic Clusters and Ionic Strength Effects,” Journal of Physical Chemistry, Vol. 97, No. 2, 1993, pp. 339-343.doi:10.1021/j100104a013
[24] P. V. Kamat, “Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces,” Chemical Review, Vol. 93, No. 1, 1993, pp. 267-300. doi:10.1021/cr00017a013
[25] K. J. Klabunde, J. Stark, O. Koper, C. Mohs, G. P. Dong, S. Decker, Y. Jiang, I. Lagadic and D. Zhang, “Nano- crystals as Stoichiometric Reagents with Unique Surface Chemistry,” Journal of Physical Chemistry, Vol. 100, No. 30, 1996, pp. 12142-12153. doi:10.1021/jp960224x
[26] M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemannt, “Environmental Applications of Semiconductor Photocatalysis,” Chemical Reviews, Vol. 95, No. 1, 1995, pp. 69-96. doi:10.1021/cr00033a004
[27] J. C. Ireland, P. Klostermann, E. W. Rice and R. M. Clark, “Inactivation of Escherichia coli by Titanium Dioxide Photocatalytic Oxidation,” Applied and Environmental Microbiology, Vol. 59, No. 5, 1993, pp. 1668-1670.
[28] M. S. Chiou, P. Y. Ho and H. Y. Li, “Adsorption of Anionic Dyes in Acid Solutions Using Chemically Cross- Linked Chitosan Beads,” Dyes and Pigments, Vol. 60, No. 1, 2004, pp. 69-84. doi:10.1016/S0143-7208(03)00140-2
[29] R. Gong, Y. Ding, M. Li, C. Yang, H. Liu and Y. Sun, “Utilization of Powdered Peanut Hull as Biosorbent for Removal of Anionic Dyes from Aqueous Solution,” Dyes and Pigments, Vol. 64, No. 3, 2005, pp. 187-192.doi:10.1016/j.dyepig.2004.05.005
[30] C. Namasivayam and D. Kavitha, “Removal of Congo Red from Water by Adsorption onto Activated Carbon Prepared from Coir Pith, an Agricultural Solid Waste,” Dyes & Pigments, Vol. 54, No. 1, 2002, pp. 47-58.doi:10.1016/S0143-7208(02)00025-6
[31] V. Vimonses, S. Lei, B. Jin, C. W. K. Chow and C. Saint, “Kinetic Study and Equilibrium Isotherm Analysis of Congo Red Adsorption by Clay Materials,” Chemical Engineering Journal, Vol. 148, No. 2-3, 2009, pp. 354- 364. doi:10.1016/j.cej.2008.09.009
[32] M. K. Purkait, A. Maiti, S. DasGupta and S. De, “Re- moval of Congo Red Using Activated Carbon and Its Regeneration,” Journal of Hazardous Materials, Vol. 145, No. 1-2, 2007, pp. 287-295. doi:10.1016/j.jhazmat.2006.11.021
[33] F. A. Pavan, S. L. P. Dias, E. C. Lima and E. V. Benvenutti, “Removal of Congo Red from Aqueous Solution by Anilinepropylsilica Xerogel,” Dyes and Pigments, Vol. 76, No. 1, 2008, pp. 64-69. doi:10.1016/j.dyepig.2006.08.027
[34] I. D. Mall, V. C. Srivastava, N. K. Agarwal and I. M. Mishra, “Removal of Congo Red from Equilibrium Isotherm Analyses,” Chemosphere, Vol. 61, No. 4, 2005, pp. 492-501. doi:10.1016/j.chemosphere.2005.03.065
[35] H. Chen and J. Zhao, “Adsorption Study for Removal of Congo Red Anionic Dye Using Organo-Attapulgite,” Adsorption, Vol. 15, No. 4, 2009, pp. 381-389.doi:10.1007/s10450-009-9155-z
[36] M. G. Abd El-Wahed, M. S. Rafat and S. M. El- Megharbel, “Synthesis, Spectroscopic and Thermal Cha- racterization of Some Transition Metal Complexes of Folic Acid,” Spectrochimica Acta Part A, Vol. 70, No. 4, 2008, pp. 916-922. doi:10.1016/j.saa.2007.10.008
[37] M. Salavati-Niasari, N. Mir and F. Davar, “Synthesis and Characterization of NiO Nanoclusters via Thermal Decomposition,” Polyhedron, Vol. 28, No. 6, 2009, pp. 1111-1114.
[38] A. Aslani, V. Oroojpour and M. Fallahi, “Sonochemical Synthesis, Size Controlling and Gas Sensing Properties of NiO Nanoparticles,” Applied Surface Science, Vol. 257, No. 9, 2011, pp. 4056-4061. doi:10.1016/j.apsusc.2010.11.174
[39] K. Anadan and R. V. Rajenderan, “Morphological and Size Effects of NiO Nanoparticles via Solvothermal Process and Their Optical Properties,” Materials Science in Semiconductor Processing, Vol. 14, No. 1, 2011, pp. 43- 47. doi:10.1016/j.mssp.2011.01.001

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.