Pyro and Kinetic Studies of Barium Oxalate Crystals Grown in Agar Gel


Single crystals of barium oxalate have been grown using gel method at ambient temperature. Thermal characteristics and kinetic parameters of barium oxalate crystals were determined by thermo-gravimetric (TG) analysis under non-isothermal heating conditions. The pyrolysis experiments were performed with increasing temperature up-to 600℃ at heating rate of 5℃, 7℃ and 10℃ in nitrogen gas atmosphere. The pyrolysis curve showed that loss of mass took place mainly in the range of 220℃ - 400℃. At higher temperature there was a significant mass loss due to decomposition of oxalates. Ozawa and Coats & Redfern methods were used to determine the apparent activation energies of material degradation. The apparent activation energies for barium oxalate crystals were obtained 187.42 KJ·mol-1 and 185.4 KJ·mol-1 for the respective methods.

Share and Cite:

P. Dalal, K. Saraf, N. Shimpi and N. Shah, "Pyro and Kinetic Studies of Barium Oxalate Crystals Grown in Agar Gel," Journal of Crystallization Process and Technology, Vol. 2 No. 4, 2012, pp. 156-160. doi: 10.4236/jcpt.2012.24023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. V. Dalal and K. B. Saraf, “Growth and Study of Barium Oxalate Single Crystals in Agar Gel,” Bulletin of Material Science, Vol. 29, No.5, 2006, pp. 421-425. doi:10.1007/BF02914071
[2] A. M. Helmenstine, “Chemistry of Firework Colors,” The New York Times Company, New York, 2012.
[3] J. Bera and D. Sarkar, “Formation of BaTiO3 from Barium Oxalate and TiO2,” Journal of Electroceramics, Vol. 11, No. 3, 2003, pp. 131-137. doi:10.1023/B:JECR.0000026366.17280.0d
[4] P. Sharma and H. S. Virk, “Fabrication of Nanoparticles of Barium Carbonate/Oxalate Using Reverse Micelle Technique,” The Open Surface Science Journal, Vol. 1, 2009, pp. 34-39. doi:10.2174/1876531900901010034
[5] R. A. Kimel, V. Ganine and J. H. Adair, “Double Injection Synthesis and Dispersion of Submicrometer Barium Titanyl Oxalate Tetrahydrate,” Journal of the American Ceramic Society, Vol. 84, No. 5, 2001, pp. 1172-1174. doi:10.1111/j.1151-2916.2001.tb00809.x
[6] P. V. Dalal, K. B. Saraf and S. Shah, “Growth of Barium Oxalate Crystals in Agar-Agar Gel and Their Characterization,” Crystal Research and Crystal Technology, Vol. 44, No. 1, 2009, pp. 36-42. doi:10.1002/crat.200800221
[7] A W. Coats and J. P. Redfern, “Kinetic Parameters from Thermogravimetric Data,” Nature, Vol. 201, No. 4914, 1964, pp. 68-69. doi:10.1038/201068a0
[8] H. H. Horowitz and G. Metzger, “A New Analysis of Thermogravimetric Traces,” Analytical Chemistry, Vol. 35, No. 10, 1963, pp. 1464-1468. doi:10.1021/ac60203a013
[9] E. S. Freeman and B. Carroll, “The Application of Thermoanalytical Decomposition of Calcium Oxalate Monohydrate,” Journal of Physical Chemistry, Vol. 62, 1958, pp. 394-397. doi:10.1021/j150562a003
[10] D. W. van Krevelan, C. van Heerdeen and F. J. Huntjens, “Physiochemical Aspects of the Pyrolysis of Coal and Related Organic Compounds,” Fuel, Vol. 30, 1951, pp. 253.
[11] D. Dollimore, D. L. Griffiths and D. Nicholson, “The thermal Decomposition of Oxalates. Part II. Thermogravimetric Analysis of Various Oxalates in Air and in Nitrogen,” Journal of the Chemical Society, 1963, pp. 26172623. doi:10.1039/jr9630002617
[12] P. N. Kotru, K. K. Raina and M. L. Koul, “The Kinetics of Solid-State Decomposition of Neodymium Tartrate,” Indian Journal of Pure and Applied Physics, Vol. 25, 1987, p. 220.
[13] S. K. Arora, Vipul Patel and A. Kothari, “Kinetics and Mechanism of Thermal Decomposition of Strontium Tartrate Crystals,” Materials Chemistry and Physics, Vol. 84, 2004, pp. 323-330. doi:10.1016/j.matchemphys.2003.10.017
[14] F. Schaube, L. Koch, A. W?rner and H. Müller-Steinhagen, “A Thermodynamic and Kinetic Study of the Deand Rehydration of Ca(OH)2 at High H2O Partial Pressures for Thermo-Chemical Heat Storage,” Thermochimica Acta, Vol. 538, 2012, pp. 9-20. doi:10.1016/j.tca.2012.03.003
[15] D. Fatu, “Kinetics of Gypsum Dehydration,” Journal of Thermal Analysis and Calorimetry, Vol. 65, No. 1, 2001, pp. 213-220. doi:10.1023/A:1011597106589
[16] N. Modestov, P. V. Poplankhin and N. Z. Lyakhov, “Dehydration Kinetics of Lithium Sulfate Monohydrate Single Crystals,” Journal of Thermal Analysis and Calorimetry, Vol. 65, No. 1, 2001, pp. 121-130. doi:10.1023/A:1011576502046
[17] S. A. Halawy, N. E. Fouad, M. A. Mohamed and M. I. Zaki, “Kinetic and Thermodynamic Parameters of the Decomposition of Chromium Chromate in Different Gas Atmospheres,” Journal of Thermal Analysis and Calorimetry, Vol. 65, No. 1, 2001, pp. 167-176. doi:10.1023/A:1011536920701
[18] T. Ozawa, “A New Method of Analyzing Thermogravimetric Data,” Bulletin of the Chemical Society of Japan, Vol. 38, No. 11, 1965, pp. 1881-1886. doi:10.1246/bcsj.38.1881
[19] M. Gogebakan and O. Uzun, “Thermal Stability and Mechanical Properties of Al-Based Amorphous Alloys,” Journal of Materials Processing Technology, Vol. 153, 2004, pp. 829-832. doi:10.1016/j.jmatprotec.2004.04.012
[20] J. D. Cooney and D. M. Wiles, “Thermal Degradation of Poly(ethylene terephthalate): A Kinetic Analysis of Thermoravimetric Data,” Journal of Applied Polymer Science, Vol. 28, 1983, pp. 2887-2902. doi:10.1002/app.1983.070280918
[21] K. J. Laidler, “Chemical Kinetics,” 3rd Edition, Harper &Row, New York, 1987.
[22] R. M. Dabhi and M. J. Joshi, “Thermal Studies of Gel Grown Zinc Tartrate Spherulites,” Indian Journal of Physics, Vol. 76A, No. 2, 2002, pp. 211-213.
[23] F. Yakuphanoglu, A. O. Gorgulu and A. Cukurovali, “An Organic Semiconductor and Conduction Mechanism: N[5-methyl-1,3,4-tiyodiazole-2-yl] ditiyocarbamate compound,” Physica B: Condensed Matter, Vol. 353, No. 3-4, 2004, pp. 223-229. doi:10.1016/j.physb.2004.09.099
[24] S. Mallakpour and M. Dinari, “Eco-Friendly Fast Synthesis and Thermal Degradation of Optically Active Polyamides under Microwave Accelerating Conditions,” Chinese Journal of Polymer Science, Vol. 28, No. 5, 2010, pp. 685-694. doi:10.1007/s10118-010-9120-z
[25] K. G. Mallikarjun, “Thermal Decomposition Kinetics of Ni(II) Chelates of Substituted Chalcones,” E-Journal of Chemistry, Vol. 1, No. 2, 2004, pp. 105-109. doi:10.1155/2004/385034

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.