Assessing Sprinkler Irrigation Performance Using Field Evaluations at the Medjerda Lower Valley of Tunisia

Abstract Full-Text HTML Download Download as PDF (Size:803KB) PP. 682-691
DOI: 10.4236/eng.2012.410087    4,926 Downloads   7,977 Views   Citations

ABSTRACT

Irrigation uniformity and wind drift and evaporation losses (WDEL) are major concerns for the design and management of sprinkler irrigation systems under arid or semi-arid conditions. Field trials were carried out to assess irrigation uniformity and WDEL under various wind velocities, sprinkler spacings and operating pressure heads. Based on experimental data, a frequency analysis was performed to infer the occurrence probability of a given uniformity coefficient (UC). In addition, statistical regressions were used to model WDEL as a function of different climatic variables. Increasing the operating pressure head improved uniformity at low wind speeds. It was shown that UC has been severely impaired at wind speeds above 4 m/s. In the prevailing wind conditions, the frequency analysis showed that a sprinkler spacing of 12 m × 12 m provided the best uniformity. In the local conditions, it is recommended to stop irrigation when wind velocity exceeds 4 m/s. Moreover, it was shown that wind speed and relative humidity were the main significant variables influencing WDEL.

Cite this paper

S. Yacoubi, K. Zayani, A. Slatni and E. Playán, "Assessing Sprinkler Irrigation Performance Using Field Evaluations at the Medjerda Lower Valley of Tunisia," Engineering, Vol. 4 No. 10, 2012, pp. 682-691. doi: 10.4236/eng.2012.410087.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Abu-Zeid and A. Hamdy, “Coping with Water Scarcity in the Arab World,” The 3rd International Conference on Water Resources and Arid Environments and the 1st Arab Water Fo-rum, 2008, p. 26. http://www.icwrae-psipw.org/images/stories/2008/Water/1.pdf
[2] HYDROPLAN/SCET-Tunisie, “Etude du Projet de Modernisation des Périmetres Publics Irrigués de la Basse Vallée de la Medjerda. Phase 1: Analyse de la Situation Actuelle,” Tunis, 2002, p. 196.
[3] M. Rebai and A. Zairi, “Les Périmètres Irrigués de la Basse Vallée de la MEDJERDA: Problématiques et Perspectives,” 2006. http://www.eau-sirma.net/les_rencontres/marrakech-29-31-mai-2006-maroc/les-actes
[4] A. Slatni, J. C. Mailhol, A. Zairi, G. Chateau and T. Ajmi, “Analyse et Diagnostic de la Pratique de l’Irrigation Localisée dans les Périmètres Publics Irrigués de la Basse Vallée de la Medjerda en Tunisie,” Actes du séminaire Euro-Méditerranéen “La Modernisation de l’Agriculture Irriguée”, Tome1, IAV Hassan II, Rabat-Institus, Rabat, 2004, pp. 112-122.
[5] A. Zairi, A. Slatni, J. C. Mailhol, R. Boubaker, H. El Amami, M. Ben Ayed and M. Rebai, “AnalyseDiagnostic de l’Irrigation de Surface dans les Périmètres Publics Irrigués de la Basse Vallée de la Medjerda,” Numéro Spécial des Annales de l’INRGREF, Actes du Séminaire “Economie de l’eau en irrigation”, Hammamet, 2000, pp. 10-26.
[6] AHT-Group/SCET Tunisie, “Projet de Modernisation des Périmètres Publics Irrigués de la Basse Vallée de la Medjerda. Analyse Diagnostic des Equipements d’Irrigation,” Tunis, 2009, p. 52.
[7] R. Al Atiri, “Les Efforts de Modernisation de l’Agriculture Irriguée en Tunisie,” 2004. http://www.wademed.net/ Articles/005DGGRO.pdf
[8] L. S. Pereira, “Higher Performances through Combined Improvements in Irrigation Methods and Scheduling: A Discussion,” Agricultural Water Management, Vol. 40, No. 2, 1999, pp. 153-169. doi:10.1016/S0378-3774(98)00118-8
[9] J. Keller and R. D. Bliesner, “Sprinkler and Trickle Irrigation,” Van Nostrand Reinhold, New York, 1990.
[10] C. M. Burt, A. J. Clemmens, T. S. Strelkoff, K. H. Solomon, R. D. Bliesner, L. A. Hardy, T. A. Howell and D. E. Eisenhauer, “Irrigation Performance Measures: Efficiency and Uniformity,” Journal of Irrigation and Drainage Engineering, Vol. 123, No. 6, 1997, pp. 423-442. doi:10.1061/(ASCE)0733-9437(1997)123:6(423)
[11] E. D. Vories, R. D. Von Bernuth and R. H. Mickelson, “Simulating Sprinkler Performance in Wind,” Journal of Irrigation and Drainage Engineering, Vol. 113, No. 1, 1987, pp. 119-130. doi:10.1061/(ASCE)0733-9437(1987)113:1(119)
[12] F. Dechmi, E. Playán, J. Cavero, J. M. Faci and A. Martínez-Cob, “Wind Effects on Solid Set Sprinkler Irrigation Depth Yield of Maize,” Irrigation Science, Vol. 22, No. 2, 2003, pp. 67-77. doi:10.1007/s00271-003-0071-9
[13] N. Zapata, E. Playan, A. Martinez-Cob, I. Sanchez, J. M. Faci and S. Lecina, “From On-Farm Solid-Set Sprinkler Irrigation Design to Collective Irrigation Network Design in Windy Areas,” Agricultural Water Management, Vol. 87, No. 2, 2007, pp. 187-199. doi:10.1016/j.agwat.2006.06.018
[14] N. Lamaddalena, U. Fratino and A. Daccache, “On-Farm Sprinkler Irrigation Performance as Affected by the Distribution System,” Biosystems Engineering, Vol. 96, No. 1, 2007, pp. 99-109. doi:10.1016/j.biosystemseng.2006.09.002
[15] D. C. Kincaid, K. H. Solomon and J. C. Oliphant, “Drop Size Distributions for Irrigation Sprinklers,” Transactions of the ASAE, Vol. 39, No. 3, 1996, pp. 839-845.
[16] E. Playán, R. Salvador, J.M. Faci, N. Zapata, A. Martínez-Cob and I. Sánchez, “Day and Night Wind Drift and Evaporation Losses in Sprinkler Solid-Sets and Moving Laterals,” Agricultural Water Management, Vol. 76, No. 3, 2005, pp. 139-159. doi:10.1016/j.agwat.2005.01.015
[17] J. M. Tarjuelo, J. F. Ortega, J. Montero and J. A. de Juan, “Modelling Evaporation and Drift Losses in Irrigation with Medium Size Impact Sprinklers under Semi-Arid Conditions,” Agricultural Water Management, Vol. 43, No. 3, 2000, pp. 263-284. doi:10.1016/S0378-3774(99)00066-9
[18] A. Yazar, “Evaporation and Drift Losses from Sprinkler Irrigation Systems under Various Operating Conditions,” Agricultural Water Management, Vol. 8, No. 4, 1984, pp. 439-449. doi:10.1016/0378-3774(84)90070-2
[19] S. Yacoubi, K. Zayani, N. Zapata, A. Zairi, A. Slatni, R. Salvador and E. Playán, “Day and Night Time Sprinkler Irrigated Tomato: Irrigation Performance and Crop Yield,” Biosystems Engineering, Vol. 107, No. 1, 2010, pp. 25-35. doi:10.1016/j.biosystemseng.2010.06.009
[20] ISO Standard 7749/2, “Agricultural Irrigation Equipment. Rotating Sprinklers. Part 2. Uniformity of Distribution and Test Methods,” Geneva, 1990.
[21] J. L. Merriam and J. Keller, “Farm Irrigation System Evaluation: A Guide for Management,” Utah State University, Logan, 1978.
[22] J. E. Christiansen, “Irrigation by Sprinkling,” California Agricultural Experiment Station Bulletin 670, University of California, Berkeley, 1942.
[23] P. Dagnelie, “Théorie et Méthodes Statistiques. Applications Agronomiques. Vol. 2,” Les Presses Agronomiques de Gembloux, Gembloux, 1978.
[24] J. M. Tarjuelo, J. Montero, P. A. Carion, F. T. Honroubia and M. A. Calvo, “Irrigation Uniformity with Medium Size Sprinklers. Part II: Influence of Wind and Other Factors on Water Distribution,” Transactions of the ASAE, Vol. 42, No. 3, 1999, pp. 677-689.
[25] J. M. Tarjuelo, J. Montero, F. T. Honroubia, J. Ortiz and J. F. Ortega, “Analysis of Uniformity of Sprinkler Irrigation in Semi-Arid Area,” Agricultural Water Management, Vol. 40, No. 2, 1999, pp. 315-331. doi:10.1016/S0378-3774(99)00006-2
[26] H. Moazed, A. Bavi, S. Boroomand-Nasab, A. Naseri and M. Albaji, “Effects of Climatric and Hydraulic Parameters on Water Uniformity Coefficient in Solid Set Systems,” Journal of Applied Sciences, Vol. 10, No. 16, 2010, pp. 1792-1796. doi:10.3923/jas.2010.1792.1796
[27] E. Vories and R. D. von Bernuth, “Single Nozzle Sprinkler Performance in Wind,” Transactions of the ASAE, Vol. 29, No. 5, 1986, pp. 1325-133.
[28] N. Sahoo, P. L. Pradhan, N. K. Anumala and M. K. Ghosal, “Uniform Water Distribution from Low Pressure Rotating Sprinklers,” The CIGR Ejournal, Manuscript LW 08014. Vol. X. 2008, p. 10. http://www.cigrjournal.org/index.php/Ejounral/article/viewFile/1231/1088
[29] D. C. Kincaid, “Minimizing Energy Requirements for Sprinkler Laterals,” ASAE Paper No. 84-2585, St. Joseph, 1984.
[30] I. Seginer, D. Kantz and D. Nir, “The Distortion by Wind of the Distribution Patterns of Single Sprinklers,” Agricultural Water Management, Vol. 19, No. 4, 1991, pp. 341-359. doi:10.1016/0378-3774(91)90026-F
[31] R. Elding, “Kinetic Energy, Evaporation and Wind Drift of Droplets from Low Pressure Irrigation Nozzles,” Transactions of the ASAE, Vol. 28, No. 5, 1985, pp. 1543-1550.
[32] J. Montero, J. M. Tarjuelo and P. Carrion, “Sprinkler Droplet Size Distribution Measured with an Optical Spectropluviometer,” Irrigation Science, Vol. 22, No. 2, 2003, pp. 47-56. doi:10.1007/s00271-003-0069-3
[33] D. L. Martin, D. C. Kincaid and W. M. Lyle, “Design and Operation of Sprinkler Systems,” In: Glenn J. Hoffman, Ed., Design and Operation of Farm Irrigation Systems, American Society of Agricultural and Biological Engineers, St. Joseph, 2007, pp. 557-631.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.