Wave Transmission in Dispersive Si-Based One Dimensional Photonic Crystal

Abstract Full-Text HTML XML Download Download as PDF (Size:573KB) PP. 237-241
DOI: 10.4236/opj.2012.223036    4,498 Downloads   7,603 Views   Citations


Transmission of electromagnetic waves through a Si-based one dimensional photonic crystal has been investigated. The proposed structure works as an omni-directional reflector for a certain range of wavelength for an angle of incidence up to 55?. The structure works as a narrow band TM-polarization filter for an angle of incidence more than 55?, i.e. a filter which completely blocks TE-polarized waves but allows certain wavelengths of TM-polarized waves. But at an angle of incidence of 89?, the structure works as a multiple narrow band TM-polarization filter even though no defect layer is introduced inside the structure. It is also found that this multiple narrow pass-bands of TM-polarized waves can be tuned to a desired range of wavelength by changing the temperature of the structure.

Cite this paper

V. Kumar, B. Suthar, A. Kumar, V. Kumar, K. Singh, A. Bhargva and S. Ojha, "Wave Transmission in Dispersive Si-Based One Dimensional Photonic Crystal," Optics and Photonics Journal, Vol. 2 No. 3A, 2012, pp. 237-241. doi: 10.4236/opj.2012.223036.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059 (1987). doi:10.1103/PhysRevLett.58.2059
[2] Ho, K.M., Chan, C.T. and Soukoulis, C.M.: Existence of a photonic gap in periodic dielectric structures, Phys. Rev. Lett., 65, 3152 (1990). doi:10.1103/PhysRevLett.65.3152
[3] Joannopoulos, J. D., Villeneuve, P. and Fan, S.: Photonic crystals: Putting a new twist on light, Nature, 386, 143 (1997). doi:10.1038/386143a0
[4] Rojas, J.A.M., Alpuente, J., Pineiro, J. and Sanchez, R.: Rigorous full vectorial analysis of electromagnetic wave propagation in 1d inhomogeneous media, Progress in Electromagnetics Research, PIER 63, 89 (2006). doi:10.2528/PIER06042501
[5] Yablonovitch, E. and Gmitter, T.J.: Photonic band structure: The face-centered-cubic case, Phys. Rev. Lett., 63, 1950 (1989). doi:10.1103/PhysRevLett.63.1950
[6] Joannopoulos, J.D., Meade, R.D. and Winn, J.N.: Photonic Crystals: Molding the Flow of Light, Princeton Univ. Press, Princeton, NJ (1995).
[7] Burstein, E. and Weisbuch, C.: Confined Electron and Photon: New Physics and Applications, Plenum Press, New York (1995). doi:10.1007/978-1-4615-1963-8
[8] Soukoulis, C. M.: Photonic Band Gap Materials, Kluwer Academic, Dordrecht (1996). doi:10.1007/978-94-009-1665-4
[9] Dowling, J. P.: Mirror on the wall: You're omnidirectional after all?, Science 282, 1841 (1998). doi:10.1126/science.282.5395.1841
[10] Yablonovitch, E.: Engineered omnidirectional external-reflectivity spectra from one-dimensional layered interference filters, Opt. Lett. 23, 1648 (1998). doi:10.1364/OL.23.001648
[11] Chigrin, D. N., Lavrinenko, A. V., Yarotsky, D. A., Aponenko, S. V.: Observation of total omnidirectional reflection from a one dimensional dielectric lattice, Appl. Phys. A: Mater. Sci. Process. 68, 25 (1999). doi:10.1007/s003390050849
[12] Suthar, B., Kumar, V., Singh, Kh.S., Bhargava, A.: Tuning of photonic band gaps in one dimensional chalcogenide based photonic crystal, Opt. Commun. 285, 1505 (2012). doi:10.1016/j.optcom.2011.10.047
[13] Kumar, V., Singh, Kh. S., Singh, S. K. and Ojha, S. P.: Broadening of omnidirectional photonic band gap in si-based one dimensional photonic crystals, PIER M 14, 101 (2010). doi:10.2528/PIERM10062807
[14] Bermann, O. L., Lozovik, Y. E., Eiderman, S. L., Coalson, R. D.: Superconducting photonic crystals: Numerical calculations of the band structure, Phys. Rev. B 74, 092505 (2006). doi:10.1103/PhysRevB.74.092505
[15] Takeda, H., Yoshino, K.: Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors, Phys. Rev. B 67, 245109 (2005). doi:10.1103/PhysRevB.67.245109
[16] Lin, W.-H., Wu, C.-J., Yang, T.-J., Chang, S.-J.: Terahertz multichanneled filter in a superconducting photonic crystal, Optics Express 18, 27155 (2010). doi:10.1364/OE.18.027155
[17] Chen, M.-S., Wu, C.-J. and Yang, T.-J.: Investigation of optical properties in near-zero-permittivity operation range for a superconducting photonic crystal, Appl. Phys. A 104, 913 (2011). doi:10.1007/s00339-011-6439-4
[18] Li, H. H.: Refractive index of silicon and germanium and its wavelength and temperature derivatives, J. Phys. Chem. Ref. Data 9, 561 (1980). doi:10.1063/1.555624
[19] Yeh, P.: Optical Waves in Layered Media, John Wiley and Sons, New York (1988).
[20] Ghosh, G.: Handbook of thermo-optic coefficients of optical materials with applications, Academic Press, New York (1985).
[21] Awasthi, S. K., Mishra, A., Malaviya, U. and Ojha, S. P.: Wave propagation in a one-dimensional photonic crystal with metamaterial, Solid State Commun. 149, 1379 (2009). doi:10.1016/j.ssc.2009.05.017

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.