Share This Article:

Recent Modifications of Adomian Decomposition Method for Initial Value Problem in Ordinary Differential Equations

Abstract Full-Text HTML Download Download as PDF (Size:190KB) PP. 228-234
DOI: 10.4236/ajcm.2012.23030    8,474 Downloads   17,428 Views   Citations

ABSTRACT

In this paper, some modifications of Adomian decomposition method are presented for solving initial value problems in ordinary differential equations. Also, the restarted and two-step methods are applied to the problem. The effectiveness of the each modified is verified by several examples.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Almazmumy, F. Hendi, H. Bakodah and H. Alzumi, "Recent Modifications of Adomian Decomposition Method for Initial Value Problem in Ordinary Differential Equations," American Journal of Computational Mathematics, Vol. 2 No. 3, 2012, pp. 228-234. doi: 10.4236/ajcm.2012.23030.

References

[1] G. Adomian, Solving Frontier Problems of Physics: The decomposition method, kluwer,Drodrecht,1994.
[2] G. Adomian and R. Rach, Modified Adomian polynomials, Mathematical computation, 76(1996), 95-97.
[3] Y. Cherruault, G. Adomian, K. Abbaoui, and R. Rach, Further remarks on convergence of decomposition method, International Journal of Bio-Medical Computing, 38, (1995), 89-93. doi:10.1016/0020-7101(94)01042-Y
[4] F.A. Hendi, H. O. Bakodah, M. Almazmumy and H. Alzumi, A simple program for solving nonlinear initial value problem using Adomian decomposition method, IJRRS, In press.
[5] A.M. Wazwaz, The modified decomposition method and Padé approximants for solving the Thomas-Fermi equation, Appl. Math. Comput., 105(1999), 11-19. doi:10.1016/S0096-3003(98)10090-5
[6] A.M. Wazwaz, A reliable modification of Adomian decomposition method, Appl. Math. Comput., 102, (1999), 77-86. doi:10.1016/S0096-3003(98)10024-3
[7] A.M. Wazwaz, Adomian decomposition method for a reliable treatment of the Edman-Flower equation, Applied Mathematics and computation, 170(2005), 543-560. doi:10.1016/j.amc.2003.12.048
[8] X. Luo, A two-step Adomian decomposition Method, Appl. Math. Comput., 170, (2005), 570-583. doi:10.1016/j.amc.2004.12.010
[9] B.G. Zhang, Q.B. Wu and X.G. Luo, Experimentation with two-step Adomian decomposition method to solve evolution models, Appl. Math. Comput., 176(2006), 1495-1502. doi:10.1016/j.amc.2005.08.029
[10] E. Babolian, S. Javadi, Restarted Adomian method for algebraic equations, Applied Mathematics and Computation, 146(2003), 533-541. doi:10.1016/S0096-3003(02)00603-3
[11] E. Babolian, S. Javadi and H. Sadehi, Restarted Adomian method for integral equations, Appl. Math. Comput., 153(2004), 353-359. doi:10.1016/S0096-3003(03)00636-2
[12] C. Jin and M. Liu, A new modification of Adomian decomposition method for solving a kind of evolution equations, Appl. Math. Comput., 169(2005), 953-962. doi:10.1016/j.amc.2004.09.072
[13] H. Jafari and V. Daftardar-Gejji, Revised Adomian decomposition method for solving a system of nonlinear equations, Appl. Math. Comput., 175(2006), 1-7. doi:10.1016/j.amc.2005.07.010
[14] H. Jafari and V. Daftardar-Gejji, Revised Adomian decomposition method for solving a system of ordinary and fractional differential equations, Appl. Math. Comput., 181(1)(2006), 598-608. doi:10.1016/j.amc.2005.12.049
[15] M. M. Hosseini and H. Nasabzadeh, Modified Adomian decomposition method for specific second order ordinary differential equations, Appl. Math. Comput., 186(2007), 117-123. doi:10.1016/j.amc.2006.07.094
[16] Y. Q. Hasan and L. M. Zhu, Modified Adomian decomposition method for singular initial value problems in the second order ordinary differential equations, Surveys in Mathematics and its Applications, 3(2008), 183-193.
[17] P. Pue-on and N. Viryapong, Modified Adomian decomposition method for solving particular third- order ordinary differential equations, Applied Mathematical Science, 6(30)(2012), 1463-1469.
[18] G. Adomian, Nonlinear Stochastic Operator Equataions, Academic Press, San Diego, CA, 1986.
[19] Y. Cherruault, Convergence of Adomians method, Kybernetes, 18(1989), 31-38. doi:10.1108/eb005812
[20] Y. Cherruault and G. Adomian, Decomposition method : A new proof of convergence, Math. Comput. Modelling, 18(12)(1993), 103-106. doi:10.1016/0895-7177(93)90233-O
[21] K. Abbaoui and Y. Cherruault, Convergence of Adomian method applied to differential equations, Comput. Math. Appl., 28(1994a), 103-109. doi:10.1016/0898-1221(94)00144-8
[22] K. Abbaoui and Y. Cherruault, Convergence of Adomian method applied to nonlinear equations, Mathematical and Computer Modelling, 20(1994b), 69-73. doi:10.1016/0895-7177(94)00163-4
[23] H. Alzumi, F. A. Hendi, H. O. Bakodah and M. Almazmumy, Convergence analysis of some decomposition method for initial value problem of the first order, to appear.
[24] G. Adomian and R. Rach, Noise terms in decomposition solution series, Computers Math. Appli., 24(11)(1992), 61-64. doi:10.1016/0898-1221(92)90031-C
[25] G. Adomian and R. Rach, The noisy convergence phenomena in decomposition method solutions, J. Comput. Appl. Math., 15(1986), 379-381. doi:10.1016/0377-0427(86)90228-1
[26] A. M. Wazwaz, Necessary conditions for the appearance of noise terms in decomposition solution series, Appl. Math. Comput., 81(1997),265-274. doi:10.1016/S0096-3003(95)00327-4
[27] A. M. Wazwaz, The existence of noise terms for systems of inhomogeneous differential and integral equations, Appl. Math. Comput., 146(2003), 81-92. doi:10.1016/S0096-3003(02)00527-1
[28] R. Rach, G. Adomian and R. E. Meyers, A modified decomposition, Comput. Math. Appl., 23(1)(1992), 17-23. doi:10.1016/0898-1221(92)90076-T
[29] A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Springer, 2009. doi:10.1007/978-3-642-00251-9
[30] A. M. Wazwaz and S. M. Elsayed, A new modification of the Adomian decomposition method for linear and nonlinear operators, Appl. Math. Comput., 122(2001), 393-405. doi:10.1016/S0096-3003(00)00060-6
[31] H. O. Bakodah, Some modification of Adomian decomposition method applied to nonlinear system of Fredholm integral equations of the second kind, Int. J. Contemp. Math. Sciences, 7(19)(2012), 929-942.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.