A Study on Synthesis and Characterization of Biobased Carbon Nanoparticles from Lignin


Carbon nanoparticles were synthesized using lignin as a renewable feedstock by employing a freeze-drying process followed by thermal carbonization. The effect of adding various amounts of KOH to a lignin solution on the solubility of the lignin, the freeze-drying process, the thermal stabilization of the freeze-dried lignin, and carbon nanoparticle formation was investigated through FTIR, DSC, SEM, TEM and surface area analysis. SEM investigations confirmed that the freeze-drying process caused the formation of lignin with a porous microstructure. TEM analysis indicates that the thermal stabilization of freeze-dried lignin prevented the formation of agglomerated carbon nanoparticles during the carbonization process. The smallest carbon nanoparticles were found to be 25nm and were prepared from the lignin precursor with 15% KOH.

Share and Cite:

P. Gonugunta, S. Vivekanandhan, A. Mohanty and M. Misra, "A Study on Synthesis and Characterization of Biobased Carbon Nanoparticles from Lignin," World Journal of Nano Science and Engineering, Vol. 2 No. 3, 2012, pp. 148-153. doi: 10.4236/wjnse.2012.23019.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Shenderova O, Zhirnov V, Brenner D. Carbon nanostructures. Critical Reviews in Solid State and Material Sciences. 2002;27:227-356. doi:10.1080/10408430208500497
[2] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. 1993.DOI:10.1038/363603a0
[3] Lu J, Yang J, Wang J, Lim A, Wang S, Loh KP. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS nano. 2009;3:2367-75. doi:10.1021/nn900546b
[4] Geim AK, Novoselov KS. The rise of graphene. Nature materials. 2007;6:183-91. doi:10.1038/nmat1849
[5] Wang Y, Serrano S, Santiago-Aviles J. Conductivity measurement of electrospun PAN-based carbon nanofiber. Journal of materials science letters. 2002;21:1055-7. doi:10.1023/A:1016081212346
[6] Ajayan P, Zhou O. Applications of carbon nanotubes. Carbon Nanotubes. 2001:391-425. doi:10.1007/3-540-39947-X_14
[7] Baughman RH, Zakhidov AA, De Heer WA. Carbon nanotubes--the route toward applications. Science. 2002;297:787-92. doi:10.1126/science.1060928
[8] Choi W, Lahiri I, Seelaboyina R, Kang YS. Synthesis of graphene and its applications: A review. Critical Reviews in Solid State and Materials Sciences. 2010;35:52-71. doi:10.1080/10408430903505036
[9] Sinha N, Yeow JTW. Carbon nanotubes for biomedical applications. NanoBioscience, IEEE Transactions on. 2005;4:180-95. doi:10.1109/TNB.2005.850478
[10] Frackowiak E, Beguin F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon. 2002; 40: 1775-87. doi:10.1016/S0008-6223(02)00045-3
[11] Ray SC, Saha A, Jana NR., and Sarkar R, Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application, J. Phys. Chem. C 2009, 113, 18546–18551. doi:10.1021/jp905912n
[12] Yu J., Zhang Q., Ahn J., Yoon S. F., Rusli, Li YJ, Gan B, Chew K, Synthesis of carbon nanoparticles by microwave plasma chemical vapor deposition and their field emission properties, Journal Of Materials Science Letters 21, 2002, 543– 545. doi:10.1023/A:1015456921100
[13] Khaydarov R, Gapurova O. Application of Carbon Nanoparticles for Water Treatment, Water Treatment Technologies for the Removal of High-Toxicity Pollutants. In: Václavíková M, Vitale K, Gallios GP, Ivani?ová L, editors.: Springer Netherlands; 2010. p. 253-8. doi:10.1007/978-90-481-3497-7_25
[14] Saatchi MM, Shojaei A, Mechanicalperformance of styrene-butadiene-rubberfilled with carbon nano particles prepared by mechanicalmixing, Materials Science and Engineering: A, 528 (24) (2011) 7161–7172. doi:10.1016/j.msea.2011.05.089
[15] Akiyama T, Akae N, Hayasaka M, Ishikawa N. Nanoparticle recovery using a fume collector comprised of carbonized refuse-derived fuel. Metallurgical and Materials Transactions B. 2004;35:993-8. DOI: 10.1007/s11663-004-0093-6
[16] Hu SL, Niu KY, Sun J, Yang J, Zhao NQ, Du XW. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. Journal of Materials Chemistry. 2009;19:484-8. doi:10.1039/b812943f
[17] Li H, He X, Liu Y, Huang H, Lian S, Lee ST, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon. 2011; 49: 605-609. doi:10.1016/j.carbon.2010.10.004
[18] Sharon M. Carbon Nanomaterials and their Synthesis from Plant‐Derived Precursors. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry. 2006; 36: 265-79. doi:10.1080/15533170600596048
[19] Sudo K, Shimizu K. A new carbon fiber from lignin. Journal of applied polymer science. 1992;44:127-34. doi:10.1002/app.1992.070440113
[20] Carrott P, Ribeiro Carrott M. Lignin–from natural adsorbent to activated carbon: A review. Bioresource Technology. 2007;98:2301-12. doi:10.1016/j.biortech.2006.08.008
[21] Kadla J, Kubo S, Venditti R, Gilbert R, Compere A, Griffith W. Lignin-based carbon fibers for composite fiber applications. Carbon. 2002;40:2913-20. doi:10.1016/S0008-6223(02)00248-8
[22] Ucar G, Meier D, Faix O, Wegener G. Analytical pyrolysis and FTIR spectroscopy of fossil Sequoiadendron giganteum (Lindl.) wood and MWLs isolated hereof. European Journal of Wood and Wood Products. 2005;63:57-63. doi:10.1007/s00107-004-0530-x
[23] Socrates G. Infrared and Raman characteristic group frequencies: tables and charts: John Wiley & Sons Inc; 2004.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.