Share This Article:

Numerical Modeling of the Measure of Global Environmental Needs with Applications Laser-LIDAR

Abstract Full-Text HTML XML Download Download as PDF (Size:577KB) PP. 194-198
DOI: 10.4236/ajcm.2012.23024    2,935 Downloads   5,542 Views  


The functions of Bessel are used extensively in the various problems of the science and the technology. A laser offers practical remote sensing technologies for measuring environmental changes on both global and local scales. We describe a computer model that was developed to simulate the performance of three-dimensional (3D) laser radars (lidars). The principle of the problem consists in interpreting information on the absorption of the laser impulse in a spectral line assigned to the chemical body that one studied. Our purpose is to estimate the vertical variation of extinction and atmospheric transmission due to aerosol particles near the air-geographical surface interface. The feasibility and effectiveness of the proposed method is demonstrated by computer simulation.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

F. Mohammedi, B. Zergui, H. Soubari and S. Bensaada, "Numerical Modeling of the Measure of Global Environmental Needs with Applications Laser-LIDAR," American Journal of Computational Mathematics, Vol. 2 No. 3, 2012, pp. 194-198. doi: 10.4236/ajcm.2012.23024.


[1] H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, and M. Matsuoka, Observation of bifurcation to chaos in an all-optical bistable system, Phys. Rev. Lett., 50(2), 109-112, 1983. doi:10.1103/PhysRevLett.50.109
[2] K. Tamura, E.P. Ippen, H.A. Haus, and L.E. Nelson, 77-fs pulse generation from a stretched-pulse mode locked all fiber ring laser, Opt. Lett., 18(13), 1080-1082,1993. doi:10.1364/OL.18.001080
[3] G. Yandong, S. Ping, and T. Dingyuan, 298a??fs passively mode locked ring fiber soliton laser, Microw. Opt. Tech. Lett., 32(5), 320-333, 2002. doi:10.1002/mop.10170
[4] K.K. Gupta, N. Onodera, and M. Hyodo, Technique to generate equal amplitude, higher-order optical pulses in rational harmonically modelocked fiber ring lasers, Electron. Lett., 37(15), 948-950, 2001. doi:10.1049/el:20010584
[5] Y. Shi, M. Sejka, and O. Poulsen, A unidirectional Er3+-doped fiber ring laser without isolator, IEEE Photon. Technol. Lett., 7(3), 290-292, 1995. doi:10.1109/68.372749
[6] J.M. Oh and D. Lee, Strong optical bistability in a simple L-band tunable erbium doped fiber ring laser, J. Quantum Electron., 40(4), 374-377, 2004. doi:10.1109/JQE.2004.824699
[7] Q. Mao and J.W.Y. Lit, L-band fiber laser with wide tuning range bases on dual wave length optical bistability in linear overlapping grating cavities, IEEE J. Quantum Electron., 39(10), 1252-1259, 2003. doi:10.1109/JQE.2003.817239
[8] L. Luo, T.J. Tee, and P.L. Chu, Bistability of erbium doped fiber laser, Opt. Commun., 146, 151-157, 1998. doi:10.1016/S0030-4018(97)00502-6
[9] P.P. Banerjee, Nonlinear Optics—Theory, Numerical Modeling, and Applications, Marcel Dekker Inc., New York, 2004.
[10] P. Meystre, On the use of the mean-field theory in optical bistability, Opt. Commun., 26(2), 277-280, 1978. doi:10.1016/0030-4018(78)90071-8
[11] L.A. Orozco, H.J. Kimble, A.T. Rosenberger, L.A. Lugiato, M.L. Asquini, M. Brambilla, and L.M. Narducci, Single-mode instability in optical bistability, Phys. Rev.A, 39(3), 1235-1252, 1989. doi:10.1103/PhysRevA.39.1235
[12] K. Ikeda, Multiple-valued stationary state and its instability of the transmitted light by a ring cavity, Opt. Commun., 30(2), 257-261, 1979. doi:10.1016/0030-4018(79)90090-7
[13] M.J. Ogorzalek, Chaos and complexity in nonlinear electronic circuits, World Sci. Ser. Nonlinear Sci., Ser. A, (22), 1997.
[14] M.P. Kennedy, Three steps to chaos—Part I: Evolution, IEEE Trans. Circuits Syst. I, Fund. Theory Appl., 40(10), 640-656, 1993.
[15] N.J. Doran and D. Wood, Nonlinear-optical loop mirror, Opt. Lett., 13(1), 56-58, 1988. doi:10.1364/OL.13.000056
[16] S. Zhang, Y. Liu, D. Lenstr, M.T. Hill, H. Ju, G.D. Khoe, and H.J.S. Dorren, Ringlaser optical flip-flop memory with single active element, IEEE J. Sel. Top. Quant. Electron., 10(5), 1093-1100, 2004.
[17] M.E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, Nonlinear amplifying loop mirror, Opt. Lett., 15(13), 752-754, 1990. doi:10.1364/OL.15.000752
[18] Alfio Quarteroni, Ricardo Sacco , Fausto Saleri, Méthodes numériques,Algorithmes, analyse et applications, Edition Springer 2008.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.