Keggin Structure and Surface Acidity of 12-Phosphotungstic Acid Grafted Zr-MCM-48 Mesoporous Molecular Sieves

DOI: 10.4236/wjnse.2012.23017   PDF   HTML     4,816 Downloads   7,999 Views   Citations


A zirconium modified MCM-48 mesoporous material was synthesized by surfactant-templated method. Surface grafting Zr-MCM-48 with tungstophosphoric acid led to a great enhancement of both the number of the Br?nsted acid sites and acidity strength in comparison with the bare support. At 100°C, the 30 wt% H3PW12O40/Zr-MCM-48 contained 174 μmol/g Br?nsted acid sites which were 14.5 times greater than that of Zr-MCM-48. The Keggin structure of the grafted heteropolyacid was rather stable after calcination at 400°C for 2 h, approximately 93.3% of Keggin structure in the dispersed heteropolyacid were remained without destruction but slightly distorted in some degree, as evidenced by FTIR characterization and 31P NMR-MAS analysis. This H3PW12O40/Zr-MCM-48 solid with three dimensional mesoporous system, large surface area and very strong Br?nsted acidity will be a promising catalyst for acid catalytic reactions.

Share and Cite:

Z. Wang and J. Navarrete, "Keggin Structure and Surface Acidity of 12-Phosphotungstic Acid Grafted Zr-MCM-48 Mesoporous Molecular Sieves," World Journal of Nano Science and Engineering, Vol. 2 No. 3, 2012, pp. 134-141. doi: 10.4236/wjnse.2012.23017.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowics, C. T. Kresge, K. D. Schmitt, C. T. –W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 114 (1992)10834–10843. doi:10.1021/ja00053a020
[2] A. Corma, From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis, Chem. Rev. 97 (1997) 2373–2420. doi:10.1021/cr960406n
[3] K. M. Reddy, C. Song, From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis, Catal. Today 31 (1996)137–144. doi:10.1016/0920-5861(96)00030-2
[4] P. Serrano, J. Aguado, J. M. Escola, Catalytic Cracking of a Polyolefin Mixture over Different Acid Solid Catalysts, Ind. Eng. Chem. Res. 39 (2000)1177–1184. doi:10.1021/ie9906363
[5] Ghanbari-Siahkali, A. Philippou, J. Dwyer, M. W. Anderson, The acidity and catalytic activity of heteropoly acid on MCM-41 investigated by MAS NMR, FTIR and catalytic tests, Appl. Catal. A: General 192 (2000) 57-69. doi:10.1016/S0926-860X(99)00333-6
[6] Y. Zhao, S.L. Qiu, Y. Tang, C. Z. Yu (editors), Recent Progress in Mesostuctured Materials, Stud. Surf. Sci. & Catal. Vol. 165 (2007) 1–920.
[7] V. Alfredsson and M. W. Anderson, Structure of MCM-48 Revealed by Transmission Electron Microscopy, Chem. Mater. 8 (1996) 1141–1146. doi:10.1021/cm950568k
[8] Timothy J.V. Yates, John Meurig Thomas, Jose-Jesus Fernandez, Osamu Terasaki, Ryong Ryoo, Paul A. Midgley, Three-dimensional realspace crystallography of MCM-48 mesoporous silica revealed by scanning transmission electron tomography, Chemical Physics Letters 418 (2006) 540–543.
[9] i Man Kim, Seong Kyun Kim and Ryong Ryoo, Synthesis of MCM-48 single crystals,Chem. Commun. (1998) 259–560.
[10] Tingshun Jiang, Duolin Wu, Jiannan Song, Xuping Zhou, Qian Zhao, Meiru Ji, Hengbo Yin, Synthesis and Characterization of Zr- MCM-48 with good thermal and hydrothermal stability, Powder Technology 207 (2011) 422–427. doi:10.1016/j.powtec.2010.11.030
[11] W.C. Zhan, Y.L. Guo, Y.Q. Wang, X.H. Liu, Y. Guo, Y.S. Wang, Z.G, Zhang, G.Z. Lu, Synthesis of Lanthanum–Doped MCM–48 Molecular Sieves and Its Catalytic Performance for the Oxidation of Styrene, The Journal of Physical Chemistry B 111 (42) (2007) 12103–12110. doi:10.1021/jp074521l
[12] Y.F. Shao, L.Z. Wang, J.L. Zhang, M. Anpo, Synthesis of Hydrothermally Stable and Long-Range Ordered Ce–MCM–48 and Fe–MCM–48 Materials, The Journal of Physical Chemistry B 109 (44) (2005) 20835–20841. doi:10.1021/jp054024+
[13] S. Gómez, O. Giraldo, L.J. Garcés, J. Villegas, S.L. Suib, New Synthetic Route for the Incorporation of Manganese Species into the Pores of MCM–48, Chemistry of Materials 16 (2004) 2411–2417.
[14] S. Yuan, L.Y. Shi, K. Mori, H. Yamashita, Synthesis of Ticontaining MCM–48 by using TiF4 as titanium source, Materials Letters 62 (2008) 3028–3030. doi:10.1016/j.matlet.2008.01.100
[15] U.S. Taralkar, P. Kalita, R. Kumar, P.N. Joshi, Synthesis, characterization and catalytic performance of Sn–MCM–48 in solvent–free Mukaiyama–type aldol condensationreactions, Applied Catalysis A: General 358 (2009) 88–94. doi:10.1016/j.apcata.2009.02.001
[16] X.L. Yang, W.L. Dai, R.H. Gao, H. Chen, H.X. Li, Y. Cao, K.N. Fan, Synthesis, characterization and catalytic application of mesoporous W–MCM–48 for the selective oxidation of cyclopentene to glutaraldehyde, Journal of Molecular Catalysis A: Chemical 241 (2005) 205-214. doi:10.1016/j.molcata.2005.07.025
[17] M.L. Pe?a, A. Dejoz, V. Fornés, F. Rey, M. I. Vázquez, J. M. López Nieto, Vcontaining MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase, Applied Catalysis A: General 209 (2001) 155-164. doi:10.1016/S0926-860X(00)00761-4
[18] M. Hartmann, S. Racouchot, C. Bischof, M. Hartmann, S. Racouchot, C. Bischof, Characterization of copper and zinc containing MCM–41 and MCM–48 mesoporous molecular sieves by temperature programmed reduction and carbon monoxide adsorption, Microporous and Mesoporous Materials 27 (1999) 309-320. doi:10.1016/S1387-1811(98)00264-9
[19] M.L. Guzmán-Castillo, H. Armendáriz-Herrera, A. Tobón-Cervantes, D.R. Acosta, P. Salas-Castillo, A. [20] [20] Montoya de la Funte, A. Vázquez-Rodriguez, The effect of sulfate ion on the synthesis and stability of mesoporous materials, Stud. Surf. Sci. Catal. 142 (2002) 1039-1046. doi:10.1016/S0167-2991(02)80261-0
[20] C.-L. Chen, H.-P. Lin, S.-T.Wong, C.-Y. Mou, Sulfated zirconia catalyst supported on MCM-41 mesoporous molecular sieve, Appl. Catal. A: General 215 (2001) 21-30. doi:10.1016/S0926-860X(01)00504-X
[21] S. Choi, Y. Wang, Z. Nie, J. Liu, C.H.F. Peden, Cssubstituted tungstophosphoric acid salt supported on mesoporous silica, Catal. Today 55 (2000) 117-124. doi:10.1016/S0920-5861(99)00231-X
[22] P. Salas, L. F. Chen, J.A. Wang, H. Armendáriz, M.L. Guzman, J.A. Montoya, D. R. Acosta, Thermal Stability and Surface Acidity of Mesoporous Silica Doubly Doped by Incorporation of Sulfate and Zirconium Ions, Applied Surface Science 252 (2005) 1124-1132. doi:10.1016/j.apsusc.2005.02.032
[23] J. A. Wang, L. F. Chen, L. E. Nore?a, J. Navarrete, M. E. Llanos, J. L. Contreras, O. Novaro. Mesoporous structure, surface acidity and catalytic properties of the Pt/Zr-MCM-41 catalysts promoted by 12-tungstophosphoric acid, Microporous and Mesoporous Materials 112 (2008) 61-76. doi:10.1016/j.micromeso.2007.09.015
[24] C.A. Emeis, Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts, J. Catal. 141 (1993) 347-354. doi:10.1006/jcat.1993.1145
[25] T. Barzzetti, E. Selli, D. Moscotti, L. Forni, Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts, J. Chem. Soc. Faraday Trans. 92 (1996) 1401-1407. doi:10.1039/ft9969201401
[26] A.V. Ivanov, T.V. Vasina, V.D. Nissenbaum, L.M. Kustov, M.N. Timofeeva, J.I. Houzvicka, Isomerization of n-hexane on the Pt-promoted Keggin and Dawson tungstophosphoric heteropoly acids supported on zirconia, Appl. Catal. A: Gen. 259 (2004) 65-72. doi:10.1016/j.apcata.2003.09.011
[27] L.R. Pizzio, C.V. Cáceres, M.N. Blanco, Acid catalysts prepared by impregnation of tungstophosphoric acid solutions on different supports, Appl. Catal. A: Gen. 167 (1998) 283-294. doi:10.1016/S0926-860X(97)00328-1
[28] J.C. Edwards, C.Y. Thiel, B. Nenac, J.F. Knifton, Solidstate NMR and FT-IR investigation of 12-tungstophosphoric acid on TiO2, Catal. Lett. 51 (1998) 77-83. doi:10.1023/A:1019045319788
[29] L.F. Chen, J.A. Wang, L.E. Noren, J. Aguilar, J. Navarrete, P. Salas, J.A. Montoya, P. Del Angel, Synthesis and physicochemical properties of Zr-MCM-41 mesoporous molecular sieves and Pt/H3PW12O40/Zr-MCM-41 catalysts, Journal of Solid State Chemistry 180 (2007) 2958-2972.
[30] D. Srinivas, R. Srivastava, P. Ratnasamy, Transesterifications over titanosilicate molecular sieves, Catal. Today 96 (2004) 127-133.
[31] A. Sakthivel, S.E. Dapurkar, N.M. Gupta, S.K. Kulshreshtha, P. Selvam, The influence of aluminium sources on the acidic behaviour as well as on the catalytic activity of mesoporous H-AlMCM-41 molecular sieves, Micropor. Mesopor. Mater. 65 (2003) 177-187. doi:10.1016/j.micromeso.2003.08.004
[32] T. López, J. Navarrete, R. Gómez, O. Novaro, F. Figueras, H. Armentáriz, Preparation of solgel sulfated ZrO2-SiO2 and characterization of its surface acidity, Appl. Catal. 125 (1999) 217-232.
[33] J.A. Anderson, C. Fergusson, I. Rodriguez-Ramos, A. Guerrero-Ruiz, Influence of Si/Zr ratio on the formation of surface acidity in silicazirconia aerogels, J. Catal. 192 (2000) 344-354. doi:10.1006/jcat.2000.2850

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.