To the Theory of Galaxies Rotation and the Hubble Expansion in the Frame of Non-Local Physics


The unified generalized non-local theory is applied for mathematical modeling of cosmic objects. For the case of galaxies the theory leads to the flat rotation curves known from observations. The transformation of Kepler’s regime into the flat rotation curves for different solitons is shown. The Hubble expansion with acceleration is explained as result of mathematical modeling based on the principles of non-local physics. Peculiar features of the rotational speeds of galaxies and effects of the Hubble expansion need not in the introduction of new essence like dark matter and dark energy. The origin of difficulties consists in the total Oversimplification following from the principles of local physics.

Share and Cite:

Alexeev, B. (2012) To the Theory of Galaxies Rotation and the Hubble Expansion in the Frame of Non-Local Physics. Journal of Modern Physics, 3, 1103-1122. doi: 10.4236/jmp.2012.329145.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] V. Rubin and W. K. Ford Jr., “Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions,” Astrophysical Journal, Vol. 159, 1970, p. 379. Hdoi:10.1086/150317
[2] V. Rubin, N. Thonnard and W. K. Ford Jr., “Rotational Properties of 21 Sc Galaxies with a Large Range of Luminosities and Radii from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc),” Astrophysical Journal, Vol. 238, 1980, pp. 471-487. Hdoi:10.1086/158003
[3] M. Milgrom, “The MOND Paradigm,” ArXiv preprint, 2007.
[4] A. D. Chernin, “Dark Energy and Universal Antigravitation,” Physics-Uspekhi, Vol. 51, No. 3, 2008, pp. 267-300. Hdoi:10.1070/PU2008v051n03ABEH006320
[5] J. S. Bell, “On the Einstein Podolsky Rosen Paradox,” Physics, No. 1, 1964, pp. 195-200.
[6] B. V. Alexeev, “Generalized Boltzmann Physical Kinetics,” Elsevier, Amsterdam, 2004.
[7] L. Boltzmann. “Weitere Studien uber das Warmegleichgewicht unter Gasmoleculen,” Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Vol. 66, 1872, p. 275.
[8] L. Boltzmann, “Vorlesungen über Gastheorie,” Verlag von Johann Barth. Zweiter unver?nderten Abdruck. 2 Teile, Leipzig, 1912.
[9] N. N. Bogolyubov, “Problemy Dinamicheskoi Teorii v Statisticheskoi Fizike, (Dynamic Theory Problems in Statistical Physics),” Moscow Leningrad Gostekhizdat, 1946.
[10] M. Born and H. S. Green. “A General Kinetic Theory of Liquids,” Proceedings of the Royal Society, Vol. 188, No. 1012, 1946, pp. 10-18. Hdoi:10.1098/rspa.1946.0093
[11] H. S. Green, “The Molecular Theory of Fluids,” North- Holland, Amsterdam, 1952.
[12] J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Processes 2: Transport in Gases,” Journal of Chemical Physics, Vol. 15, No. 1, 1947, pp. 72-76. Hdoi:10.1063/1.1746292
[13] J. Yvon, “La Theorie Statistique des Fluides et l’Equation d’etat,” Hermann, Paris, 1935.
[14] B. V. Alekseev, “Matematicheskaya Kinetika Reagiruyushchikh Gazov,” (Mathematical Theory of Reacting Gases), Nauka, Moscow, 1982.
[15] B. V. Alexeev, “The Generalized Boltzmann Equation, Generalized Hydrodynamic Equations and their Applications,” Philosophical Transactions of the Royal Society of London, Vol. 349, 1994, pp. 417-443. Hdoi:10.1098/rsta.1994.0140
[16] B. V. Alexeev, “The Generalized Boltzmann Equation,” Physica A, Vol. 216, No. 4, 1995, pp. 459-468. Hdoi:10.1016/0378-4371(95)00044-8
[17] S. Chapman, T. G. Cowling, “The Mathematical Theory of Non-Uniform Gases,” At the University Press, Cambridge, 1952.
[18] I. O. Hirschfelder, Ch. F. Curtiss and R. B. Bird, “Molecular Theory of Gases and Liquids,” John Wiley and sons, Inc., New York, Chapman and Hall, London, 1954.
[19] Yu. L. Klimontovich, “About Necessity and Possibility of Unified Description of Hydrodynamic Processes,” Theoretical and Mathematical Physics, Vol. 92, No. 2, 1992, p. 312.
[20] B. V. Alekseev, “Physical Basements of the Generalized Boltzmann Kinetic Theory of Gases,” Physics-Uspekhi, Vol. 43, No. 6, 2000, pp. 601-629. Hdoi:10.1070/PU2000v043n06ABEH000694
[21] B. V. Alekseev, “Physical Fundamentals of the Generalized Boltzmann Kinetic Theory of Ionized Gases,” Physics-Uspekhi, Vol. 46, No. 2, 2003, pp. 139-167. Hdoi:10.1070/PU2003v046n02ABEH001221
[22] B. V. Alexeev, “Generalized Quantum Hydrodynamics and Principles of Non-Local Physics,” Journal of Nanoelectronics and Optoelectronics, Vol. 3, No. 2, 2008, pp. 143-158. Hdoi:10.1166/jno.2008.207
[23] B. V. Alexeev, “Application of Generalized Quantum Hydrodynamics in the Theory of Quantum Soliton Evolution,” Journal of Nanoelectronics and Optoelectronics, Vol. 3, No. 3, 2008, pp. 316-328. Hdoi:10.1166/jno.2008.311
[24] B. V. Alexeev, “Generalized Theory of Landau Damping,” Journal of Nanoelectronics and Optoelectronics, Vol. 4, No. 1, 2009, pp. 186-199. Hdoi:10.1166/jno.2009.1021
[25] B. V. Alexeev, “Generalized Theory of Landau Damping in Collisional Media,” Journal of Nanoelectronics and Optoelectronics, Vol. 4, No. 3, 2009, pp. 379-393. Hdoi:10.1166/jno.2009.1054
[26] S. Perlmutter, et al., “Measurements of Ω and Λ from 42 High-Redshift Supernovae,” Astrophysical Journal, Vol. 517, No. 2, 1999, pp. 565-586. Hdoi:10.1086/307221
[27] A. G. Riess, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astronomical Journal, Vol. 116, No. 3, 1998, pp. 1009-1038. Hdoi:10.1086/300499
[28] A. G. Riess, et al., “Type IA Supernova Discoveries at z>1 from the Hubble Telescope: Evidence for past Deceleration and Constraints on Dark Energy Evolution,” Astrophysical Journal, Vol. 607, 2004, pp. 665-687. Hdoi:10.1086/383612
[29] B. V. Alexeev, “Non-local Physics. Non-Relativistic Theory,” Lambert Academic Press (in Russian), 2011.
[30] B. V. Alexeev and I. V. Ovchinnikova, “Non-Local Physics. Relativistic Theory,” Lambert Academic Press (in Russian), 2011.
[31] B. V. Alexeev, “Application of Non-Local Physics in the Theory of Hubble Expansion,” Nova Science Publishers, Inc., 2011.
[32] I. D. Karachentsev and O. G. Kashibadze. “Masses of the Local Group and of the M81 Group Estimated from Distortions in the Local Velocity Field,” Astrophysics, Vol. 49, No. 1, 2006, pp. 3-18.
[33] E. B. Gliner, “The Vacuum-like State of a Medium and Friedman Cosmology,” Soviet Physics—Doklady, Vol. 15, No. 6, 1970, pp. 559-561.
[34] L. S. Sparke and J. S. Gallagher III, “Galaxies in the Universe: Introduction,” Cambridge University Press, Cambridge, 2000.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.