Share This Article:

Poly(Vinyl Alcohol)-Infiltrated Carbon Nanotube Carpets

Abstract Full-Text HTML XML Download Download as PDF (Size:1703KB) PP. 658-663
DOI: 10.4236/msa.2012.39096    4,710 Downloads   7,179 Views   Citations

ABSTRACT

Carbon nanotube-polymer interaction is one of the key factors controlling the mechanical properties in composite and hybrid systems of such constituents. The current study reports a series of direct observations of substantial polymer sheathing phenomena on millimeters-high carpets of vertically aligned tubes infiltrated by Poly(vinyl alcohol) (PVA). SEM and TEM images of the composite’s fracture surface revealed that sheathing was extensive and universal over the carpet’s volume and did not influence the morphology, alignment or physical characteristics of the tubes. A significant increase in the tubes’ diameters due to PVA coating was measured. Thermogravimetric analysis results were compatible with a crystallinity increase of the polymer phase due to the presence of CNTs, indicating the potential of CNTs in nucleating polymer crystallinity. Potential applications of the nanocomposite are discussed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Dassios, "Poly(Vinyl Alcohol)-Infiltrated Carbon Nanotube Carpets," Materials Sciences and Applications, Vol. 3 No. 9, 2012, pp. 658-663. doi: 10.4236/msa.2012.39096.

References

[1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, No. 6348, 1991, pp. 56-58. doi:10.1038/354056a0
[2] K.-T. Lau and D. Hui, “Effectiveness of Using Carbon Nanotubes as Nano-Reinforcements for Advanced Composite Structures,” Carbon, Vol. 40, No. 9, 2002, pp. 1605-1606. doi:10.1016/S0008-6223(02)00157-4
[3] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis and C. Galiotis, “Chemical Oxidation of Multi Walled Carbon Nanotubes,” Carbon, Vol. 46, No. 6, 2008, pp. 833-840. doi:10.1016/j.carbon.2008.02.012
[4] K. P. Ryan, et al., “Carbon Nanotubes for Reinforcement of Plastics. A Case Study with Poly(Vinyl Alcohol),” Composites Science and Technology, Vol. 67, No. 7-8, 2007, pp. 1640-1649. doi:10.1016/j.compscitech.2006.07.006
[5] X. Zhang, et al., “Poly(Vinyl Alcohol)/SWNT Composite Film,” Nano Letters, Vol. 3, No. 9, 2003, pp. 1285-1288.doi:10.1021/nl034336t
[6] X. Zhang, et al., “Gel Spinning of PVA/SWNT Composite Fiber,” Polymer, Vol. 45, No. 26, 2004, pp. 8801-8807.doi:10.1016/j.polymer.2004.10.048
[7] B. Vigolo, et al., “Improved Structure and Properties of Single-Wall Carbon Nanotube Spun Fibers,” Applied Physics Letters, Vol. 81, 2002, pp. 1210-1212. doi:10.1063/1.1497706
[8] K. P. Ryan, et al., “Multiwalled Carbon Nanotube Nucleated Crystallization and Reinforcement in Poly(Vinyl Alcohol) Composites,” Synthetic Metals, Vol. 156, No. 2- 4, 2006, pp. 332-335. doi:10.1016/j.synthmet.2005.12.015
[9] P. Xue, et al., “Electrically Conductive Yarns Based on PVA/Carbon Nanotubes,” Composites Structures, Vol. 78, No. 2, 2007, pp. 271-277.
[10] A. B. Dalton, et al., “Super-Tough Carbon-Nanotube Fibres,” Nature, Vol. 423, 2003, p. 703. doi:10.1038/423703a
[11] O. Probst, E. M. Moore, D. E. Resasco and B. P. Grady, “Nucleation of Polyvinyl Alcohol Crystallization by Single-Walled Carbon Nanotubes,” Polymer, Vol. 45, No. 13, 2004, pp. 4437-4443. doi:10.1016/j.polymer.2004.04.031
[12] M. Cadek, et al., “Morphological and Mechanical Properties of Carbon-Nanotube-Reinforced Semicrystalline and Amorphous Polymer Composites,” Journal of Applied Physics Letters, Vol. 81, No. 27, 2003, p. 5123.doi:10.1063/1.1533118
[13] A. R. Bhattacharyya, et al., “Crystallization and Orientation Studies in Polypropylene/Single Wall Carbon Nanotube Composite,” Polymer, Vol. 44, No. 8, 2003, pp. 2373-2377. doi:10.1016/S0032-3861(03)00073-9
[14] Z. Spitalsky, D.Tasis, K. Papagelis and C. Galiotis, “Carbon Nanotube-Polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties,” Progress in Polymer Science, Vol. 35, No. 3, 2010, pp. 357-401.doi:10.1016/j.progpolymsci.2009.09.003
[15] P. Anastas and J. C. Warner, “Green Chemistry: Theory and Practive,” Oxford University Press, Oxford, 1998, p. 30.
[16] K. G. Dassios and C. Galiotis, “Polymer-Nanotube Interaction in MWCNT/Poly(Vinyl Alcohol) Composite Mats,” Carbon, Vol. 50, No. 11, 2012, pp. 4291-4294.doi:10.1016/j.carbon.2012.04.042
[17] K. G. Dassios, S. Musso and C. Galiotis, “Compressive Behavior of MWCNT/Epoxy Composite Mats,” Composites Science and Technology, Vol. 72, No. 9, 2012, pp. 1027-1033. doi:10.1016/j.compscitech.2012.03.016
[18] X. L. Xie, K. Aloys, X. P. Zhou and F. D. Zeng, “Ultrahigh Molecular Mass Polyethylene/Carbon Nanotube Composites—Crystallization and Melting Properties,” Journal of Thermal Analyisis and Calorimetry, Vol. 74, No. 1, 2003, pp. 317-323. doi:10.1023/A:1026362727368
[19] J. Sandler, G. Broza, M. Nolte, K. Schulte, Y.-M. Lam and M. S. P. Shaffer, “Crystallization of Carbon Nanotube and Nanofiber Polypropylene Composites,” Journal of Macromolecular Science, Part B: Physics, Vol. 42, No. 3-4, 2003, pp. 479-488.
[20] B. P. Grady, F. Pompeo, R. L. Shambaugh and D. E. Resasco, “Nucleation of Polypropylene Crystallization by Single-Walled Carbon Nanotubes,” Journal of Physcal Chemistry B, Vol. 106, No. 23, 2002, pp. 5852-5858.doi:10.1021/jp014622y
[21] J. F. Kenney and G. W. Willcockson, “Structure-Property Relationships of Poly(Vinyl Alcohol). III. Relationships between Stereo-Regularity, Crystallinity, and Water Resistance in Poly(Vinyl Alcohol),” Journal of Polymer Science Part A-1: Polymer Chemistry, Vol. 4, No. 3, 1996, pp. 679-698. doi:10.1002/pol.1966.150040321
[22] D. Aussawasathien, P. He and L. Dai, “Polymer Nanofibers and Polymer Sheathed Carbon Nanotubes for Sensors,” Polymeric Nanofibers, Chapter 18, 2006, pp. 246- 268.
[23] S. Matsumura, H. Kurita and H. Shimokobe, “Anaerobic Biodegradability of Polyvinyl Alcohol,” Biotechnology Letters, Vol. 15, No. 7, 1993, pp. 749-754.doi:10.1007/BF01080150

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.