Synthesis of Tin Oxide Thick Film and Its Investigation as a LPG Sensor at Room Temperature

Abstract

Present paper reports the synthesis of SnO2, its characterization and performance as Liquefied Petroleum Gas (LPG) Sensor. XRD pattern revealed the tetragonal crystalline nature of the material. Crystallites sizes were in the range 14 - 30 nm. Tin oxide thick film was prepared by using screen printing technique. After that these were investigated through SEM. SEM image of thick-film surface was spherical in shape and porous. Further at room temperature, the film was exposed to LPG in a controlled gas chamber and variations in resistance with the concentrations of LPG were observed. The maximum value of average sensitivity of thick film was 37 MΩ/min for 5 vol. % of LPG. Sensor responses as a function of exposure and response times were also estimated and maximum sensor response were found 273 and 312 for 4 and 5 vol. % of LPG respectively.

Share and Cite:

T. Shukla, "Synthesis of Tin Oxide Thick Film and Its Investigation as a LPG Sensor at Room Temperature," Journal of Sensor Technology, Vol. 2 No. 3, 2012, pp. 102-108. doi: 10.4236/jst.2012.23015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Suo, F. Wu, Q. Wang, G. Liu, F. Qiu, B. Xu and M. Zhao, “Study on Ethanol Sensitivity of Nanocrystalline La0.7Sr0.3FeO3-Based Gas Sensor,” Sensors and Actuators B: Chemical, Vol. 45, No. 3, 1997, pp. 245-249. doi:10.1016/S0925-4005(97)00314-6
[2] A. A. Tomchenko, G. P. Harmer, B. T. Marquis and J. W. Allen, “Semiconducting Metal Oxide Sensor Array for the Selective Detection of Combustion Gases,” Sensors and Actuators B: Chemical, Vol. 93, No. 1-3, 2003, pp. 126-134. doi:10.1016/S0925-4005(03)00240-5
[3] Y. G. Choi, G. Sakai, K. Shimanoe, Y. Teraoka, N. Miura and N. Yamazoe, “Preparation of Size and Habitcontrolled Nano Crystallites of Tungsten Oxide,” Sensors and Actuators B: Chemical, Vol. 93, No. 1-3, 2003, pp. 486-494. doi:10.1016/S0925-4005(03)00195-3
[4] A. B. Bodade, M. Alvi, A. V. Kadu, S. V. Jagtap, S. K. Rithe, P. R. Padole and G. N. Chaudhari, “Synthesis of Nanocrystalline SnO2 Modified TiO2: A Material for Carbon Monoxide Gas Sensor,” Sensors & Transducers, Vol. 98, No. 11, 2008, pp. 6-15
[5] N. Yamozoe and N. Mura, “Environmental Gas Sensing,” Sensors and Actuators B: Chemical, Vol. 20, No. 2-3, 1994, pp. 95-102. doi:10.1016/0925-4005(93)01183-5
[6] M. N. Rumyantseva, V. V. Kovalenko, A. M. Gaskov, T. Pagnier, D. Machon, J. Arbiol and J. R. Morante, “Nanocomposites SnO2/Fe2O3: Wet Chemical Synthesis and Nanostructure Characterization,” Sensors and Actuators B: Chemical, Vol. 109, No. 1, 2005, pp. 64-74. doi:10.1016/j.snb.2005.03.017
[7] H. Tang, K. Prasad, R. Sanjines and F. Levy, “TiO2 Anatase Thin Films as Gas Sensors,” Sensors and Actuators B: Chemical, Vol. 26, No. 1-3, 1995, pp. 71-75. doi:10.1016/0925-4005(94)01559-Z
[8] M. Mabrook and P. Hawkins, “Benzene Sensing Using Thin Films of Titanium Dioxide Operating at Room Temperature,” Sensors and Actuators B: Chemical, Vol. 2, No. 9, 2002, pp. 374-382.
[9] J. Q. Xu, Q. Y. Pan, Y. A. Shun and Z. Li, “Emulsion Synthesis Structure and Gas Sensing Properties of Nanometer ZnO,” Journal of Inorganic Chemistry, Vol. 14, 1998, pp. 355-359.
[10] P. T. Mosely, “Solid-State Gas Sensors,” Measurement Science and Technology, Vol. 8, No. 3, 1997, pp. 223-237. doi:10.1088/0957-0233/8/3/003
[11] A. Srivastava, K. Jain, Rashmi, A. K. Srivastava and S. T. Lakshmikumar, “Study of Structural and Microstructural Properties of SnO2 Powder for LPG and CNG Gas Sensors,” Materials Chemistry and Physics, Vol. 97, No. 1, 2006, pp. 85-90. doi:10.1016/j.matchemphys.2005.07.065
[12] U. S. Choi, G. Sakai, K. Shimanoe and N. Yamazoe, “Sensing Properties of SnO2-Co3O4 Composites to CO and H2,” Sensors and Actuators B: Chemical, Vol. 98, No. 2-3, 2004, pp. 166-173. doi:10.1016/j.snb.2003.09.033
[13] D. Kohl, “Surface Process in the Detection of Reducing Gases with SnO2-Based Devices,” Sensors and Actuators B: Chemical, Vol. 18, No. 1, 1989, pp. 71-118. doi:10.1016/0250-6874(89)87026-X
[14] J. Gong, Q. Chen, W. Fei and S. Seal, “Micro-Machined Nano-Crystalline SnO2 Chemical Gas Sensors for Electronic Nose,” Sensors and Actuators B: Chemical, Vol. 102, No. 1, 2004, pp. 117-125. doi:10.1016/j.snb.2004.02.055
[15] D. Kotsikau, M. Ivanovskaya, D. Orlik and M. Falasconi, “Gas Sensitive Properties of Thin and Thick Film Sensors Based on Fe2O3-SnO2 Nanocomposites,” Sensors and Actuators B: Chemical, Vol. 101, No. 1-2, 2004, pp. 199-206. doi:10.1016/j.snb.2004.02.051
[16] G. Korotcenkov, V. Macsanov, V. Brinzari, V. Tolstoy, J. Schwank, A. Cornet and J. Morante, “Influence of Cu-, Fe-, Co-, and Mn-Oxide Nanoclusters on Sensing Behavior of SnO2 Films,” Thin Solid Films, Vol. 467, No. 1-2, 2004, pp. 209-214. doi:10.1016/j.tsf.2004.03.028
[17] R. K. Srivastava, P. Lal, R. Dwivedi and S. K. Srivastava, “Sensing Mechanism in Tin Oxide Based Thick Film Gas Sensors,” Sensors and Actuators B: Chemical, Vol. 21, No. 3, 1994, pp. 213-218. doi:10.1016/0925-4005(94)01248-2
[18] P. T. Moseley, “Sensors, New Trends and Future Prospects of Thick- and Thin-Film Gas Sensors,” Sensors and Actuators B: Chemical, Vol. 3, No. 3, 1991, pp. 167-174. doi:10.1016/0925-4005(91)80002-2
[19] V. Guidi, M. A. Butturi, M. C. Carotta, B. Cavicchi, M. Ferroni, C. Malagu, G. Martinelli, D. Vincenzi, M. Sacerdoti and M. Zen, “Gas Sensing through Thick Film Technology,” Sensors and Actuators B: Chemical, Vol. 84, No. 1, 2002, pp. 72-77. doi:10.1016/S0925-4005(01)01077-2
[20] B. C. Yadav, A. Yadav, T. Shukla and S. Singh, “Experimental Investigations on Solid State Conductivity of Cobaltzincate Nanocomposite for Liquefied Petroleum Gas Sensing,” Sensor Letters, Vol. 7, No. 6, 2009, pp. 1119-1123. doi:10.1166/sl.2009.1245
[21] S. D. Bakrania and M. S. Wooldridge, “The Effects of Two Thick Film Deposition Methods on Tin Dioxide Gas Sensor Performance,” Sensors, Vol. 9, No. 9, 2009, pp. 6853-6868.
[22] E. Llobet, P. Ivanov, X. Vilanova, J. Brezmes, J. Hubalek, K. Malysz, I. Gràcia, C. Cané and X. Correig, “Screen-Printed Nanoparticle Tin Oxide Films for High-Yield Sensor Microsystems,” Sensors and Actuators B: Chemical, Vol. 96, No. 1-2, 2003, pp. 94-104 doi:10.1016/S0925-4005(03)00491-X
[23] M. R. Vaezi and S. K. Sadrnezhaad, “Gas Sensing Behavior of Nanostructured Sensors Based on Tin Oxide Synthesized with Different Methods,” Materials Science and Engineering B, Vol. 140, No. 1-2, 2007, pp. 73-80 doi:10.1016/j.mseb.2007.04.011
[24] R. Savua, M. A. Ponce, E. Joanni, P. R. Bueno, M. Castro, M. Cilense, J. A. Varela and E. Longo, “Grain Size Effect on the Electrical Response of SnO2 Thin and Thick Film Gas Sensors,” Materials Research, Vol. 12, No. 1, 2009, pp. 83-87
[25] B. C. Yadav, R. Srivastava and A. Yadav, “Nanostructured Zinc Oxide Synthesized via Hydroxide route as Liquid Petroleum Gas Sensor,” Sensors and Materials Japan, Vol. 21, No. 2, 2009, pp. 87-94.
[26] B. C. Yadav, A. Yadav, S. Singh and T. Shukla, “Experimental Investigations on Nano-Sized Ferric Oxide and Its LPG Sensing,” International Journal of Nanoscience, Vol. 10, No. 1, 2010, pp. 135-139. doi:10.1142/S0219581X11007478
[27] B. C. Yadav, R. Srivastava, A. Yadav and V. Srivastava, “LPG Sensing of Nanostructured Zinc Oxide and Zinc Niobate,” Sensors Letters, Vol. 6, No. 5, 2008, pp. 714-718. doi:10.1166/sl.2008.m132
[28] T. Shukla, B. C. Yadav and P. Tandon, “Synthesis of Nanostructured Cobalt Titanate and Its Application as Liquefied Petroleum Gas Sensor at Room Temperature,” Sensor Letters, Vol. 9, No. 2, 2011, pp. 533-540. doi:10.1166/sl.2011.1508
[29] S. Basu and P. K. Basu, “Nanocrystalline Metal Oxides for Methane Sensors: Role of NobleMetals,” Journal of Sensors, 2009, Article ID: 861968. doi:10.1155/2009/861968

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.