Choline Promotes Growth and Tabtoxin Production in a Pseudomonas syringae Strain


Some Pseudomonas syringae pathovars secrete tabtoxin, a monocyclic β-lactam antibiotic, responsible for chlorosis, the principal halo blight symptom in susceptible plants as oats, rye, barley, wheat and sorghum, among other. Here, we demonstrated that the production of tabtoxin in a P. syringae strain increased at least 150%, when choline, betaine or dimethylglycine were used as nitrogen source, or when choline was added as osmoprotectant in hyperosmolar culture media. Besides, we investigated the induction of phosphorylcholine phosphatase (PchP) activity when choline or its metabolites were used as nitrogen sources. PchP is an enzyme involved in Pseudomonas aeruginosa pathogenesis through its contribution to the breakdown of choline-containing compounds of the host cells. Considering these results and that the success of a pathogenic microorganism depends on its ability to survive and proliferate in its target tissue, we propose that choline is one of the plant signals that contribute to establishment of the infection by tabtoxin-producing strains of P. syringae.

Share and Cite:

L. A. Gallarato, E. D. Primo, Á. T. Lisa and M. N. Garrido, "Choline Promotes Growth and Tabtoxin Production in a Pseudomonas syringae Strain," Advances in Microbiology, Vol. 2 No. 3, 2012, pp. 327-331. doi: 10.4236/aim.2012.23039.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. T. Lisa, C. H. Casale and C. E. Domenech, “Cholinesterase, Acid Phosphatase and Phospholipase C of Pseudomonas aeruginosa under Hyperosmotic Conditions in a High-Phosphate Medium,” Current Microbiology, Vol. 28, No. 2, 1994, pp. 71-76. Hdoi:10.1007/BF01569049
[2] A. T. Lisa, G. I. Lucchesi and C. E. Domenech, “Pathogenicity of Pseudomonas aeruginosa and Its Relationship to the Choline Metabolism through the Action of Cholinesterase, Acid Phosphatase, and Phospholipase C,” Current Microbiology, Vol. 29, No. 4, 1994, pp. 193-199. Hdoi:10.1007/BF01570153
[3] M. A. Salvano and C. E. Domenech, “Kinetic Properties of Purified Pseudomonas aeruginosa Phosphorylcholine Phosphatase Indicated That This Enzyme May Be Utilized by the Bacteria to Colonize in Different Environments,” Current Microbiololy, Vol. 39, No. 1, 1999, pp. 1-8. Hdoi:10.1007/PL00006819
[4] A. T. Lisa, P. R. Beassoni, M. J. Massimelli, L. H. Otero and C. E. Domenech, “A Glance on Pseudomonas aeruginosa Phosphorylcholine Phosphatase, an Enzyme Whose Synthesis Depends on the Presence of Choline in Its Environment,” In: A. Méndez-Vilas, Ed., Communicating Current Research and Educational Topics and Trends in Applied Microbiology, Badajoz, Vol. 1, 2007, pp. 255-262.
[5] C. E. Domenech, L. H. Otero, P. R. Beassoni and A. T. Lisa, “Phosphorylcholine Phosphatase: A Peculiar Enzyme of Pseudomonas aeruginosa,” Enzyme Research, Vol. 2011, 2011, Article ID: 561841.
[6] M. J. Massimelli, P. R. Beassoni, M. A. Forrellad, J. L. Barra, M. N. Garrido, C. E. Domenech and A. T. Lisa, “Identification, Cloning and Expression of Pseudomonas aeruginosa Phosphorylcholine Phosphatase Gene,” Current Microbiology, Vol. 50, No. 5, 2005, pp. 251-256. Hdoi:10.1007/s00284-004-4499-9
[7] P. R. Beassoni, “Relación Entre Estructura y Función de la Fosforilcolina Fosfatasa de Pseudomonas aeruginosa y otras Bacterias del Género Pseudomonas,” Ph.D. Dissertation, Universidad Nacional de Río Cuarto, Córdoba, 2006.
[8] C. L. Bender, F. Alarcon-Chaidez and D. C. Gross, “Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases,” Microbiology and Molecular Biology Reviews, Vol. 63, No. 2, 1999, pp. 266-292.
[9] M. S. H. Hwang, R. L. Morgan, S. F. Sarkar, P. W. Wang and D. S. Guttman, “Phylogenetic Characterization of Virulence and Resistance Phenotypes of Pseudomonas syringae,” Applied Environmental Microbiology, Vol. 71, No. 9, 2005, pp. 5182-5191. Hdoi:10.1128/AEM.71.9.5182-5191.2005
[10] E. Arrebola, F. M. Cazorla, A. Perez-García and A. de Vicente, “Chemical and Metabolic Aspects of Antimetabolite Toxins Produced by Pseudomonas syringae Pathovars,” Toxins, Vol. 3, No. 9, 2011, pp. 1089-1110. Hdoi:10.3390/toxins3091089
[11] M. Kimura, H. Anzai and I. Yamaguchi, “Microbial Toxins in Plant-Pathogen Interactions: Biosynthesis, Resistance Mechanisms, and Significance,” Journal of General Applied Microbiology, Vol. 47, No. 4, 2001, pp. 149-160. Hdoi:10.2323/jgam.47.149
[12] F. Dehbi, D. Harzallah and L. Larous, “Effects of Nu- tritional Factors on Production of Tabtoxin, a Phytotoxin, by Pseudomonas syringaepv. Tabaci,” Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet, Vol. 66, No. 2a, 2001, pp. 241-247.
[13] B. V?lksch and H. Weingart, “Toxin Production by pathovars of Pseudomonas syringae and Their Antagonistic Activities against Epiphytic Microorganism,” Journal of Basic Microbiology, Vol. 38, No. 2, 1998, pp. 135-145. Hdoi:10.1002/(SICI)1521-4028
[14] J. Sambrook and D. W. Russell, Molecular Cloning: A Laboratory Manual,” 3rd Edition, NY Laboratory Press, Cold Spring Harbor, 2001.
[15] Y. P. Salch and P. D. Shaw, “Isolation and Characterization of Pathogenicity Genes of Pseudomonas syringae pv. Tabaci,” Journal of Bacteriology, Vol. 179, No. 6, 1988, pp. 2584-2591.
[16] M. M. Bradford, “A Rapid and Sensitive Method for the Quantization of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding,” Analytical Biochemistry, Vol. 72, 1976, pp. 248-254. Hdoi:10.1016/0003-2697(76)90527-3
[17] C. Chen and G. A. Beattie, “Characterization of the Osmoprotectant Transporter OpuC from Pseudomonas syringae and Demonstration That Cystathionine-β-Synthase domains Are Required for Its Osmoregulatory Function,” Journal of Bacteriology, Vol. 189, No. 19, 2007, pp. 6901-6912. Hdoi:10.1128/JB.00763-07
[18] C. Chen and G. A. Beattie, “Pseudomonas syringae BetT Is a Low-Affinity Choline Transporter That Is Responsible for Superior Osmoprotection by Choline over Glycine Betaine,” Journal of Bacteriology, Vol. 190, No. 8, 2008, pp. 2717-2725. Hdoi:10.1128/JB.01585-07
[19] A. Brencic and S. C. Winans, “Detection of and Response to Signals Involved in Host-Microbe Interactions by Plant-Associated Bacteria,” Microbiology and Molecular Biology Review, Vol. 69, No. 1, 2005, pp. 155-164. Hdoi:10.1128/MMBR.69.1.155-194.2005

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.