A Modified Precondition in the Gauss-Seidel Method

DOI: 10.4236/alamt.2012.23005   PDF   HTML   XML   5,805 Downloads   13,910 Views   Citations

Abstract

In recent years, a number of preconditioners have been applied to solve the linear systems with Gauss-Seidel method (see [1-7,10-12,14-16]). In this paper we use Sl instead of (S + Sm) and compare with M. Morimoto’s precondition [3] and H. Niki’s precondition [5] to obtain better convergence rate. A numerical example is given which shows the preference of our method.

Share and Cite:

A. Nazari and S. Borujeni, "A Modified Precondition in the Gauss-Seidel Method," Advances in Linear Algebra & Matrix Theory, Vol. 2 No. 3, 2012, pp. 31-37. doi: 10.4236/alamt.2012.23005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Z. Huang, G. H. Cheng and X. Y. Cheng, “Modified SOR-Type Ierative Method for Z-Matrices,” Applied Mathematics and Computation, Vol. 175, No. 1, 2006, pp. 258-268. doi:10.1016/j.amc.2005.07.050
[2] A. D. Gunawardena, S. K. Jain and L. Snyder, “Modified Iterative Method for Consistent Linear Systems,” Linear Algebra and Its Applications, Vol. 154-156, 1991, pp. 123-143. doi:10.1016/0024-3795(91)90376-8
[3] M. Morimoto, K. Harada, M. Sakakihara and H. Sawami, “The Gauss-Seidel Iterative Method with the Preconditioning Matrix (I + S + Sm),” Japan Journal of Industrial and Applied Mathematics, Vol. 21, No. 1, 2004, pp. 25-34. doi:10.1007/BF03167430
[4] D. Noutsos and M. Tzoumas, “On Optimal Improvements of Classical Iterative Schemes for Z-Matrices,” Journal of Computational and Applied Mathematics, Vol. 188, No. 1, 2006, pp. 89-106. doi:10.1016/j.cam.2005.03.057
[5] H. Niki, T. Kohno and M. Morimoto, “The Preconditioned Gauss-Seidel Method Faster than the SOR Method,” Journal of Computational and Applied Mathematics, Vol. 218, No. 1, 2008, pp. 59-71. doi:10.1016/j.cam.2007.07.002
[6] H. Niki, T. Kohno and K. Abe, “An Extended GS Method for Dense Linear System,” Journal of Computational and Applied Mathematics, Vol. 231, No. 1, 2009, pp. 177-186. doi:10.1016/j.cam.2009.02.005
[7] M. Morimoto, H. Kotakemori, T. Kohno and H. Niki, “The Gauss-Seidel Method with Preconditioner (I + R),” Transactions of the Japan Society for Industrial and Applied Mathematics, Vol. 13, 2003, pp. 439-445.
[8] H. Niki, K. Harada, M. Morimoto and M. Sakakihara, “The Survey of Preconditioners Used for Accelerating the Rate of Convergence in the Gauss-Seidel Method,” Journal of Computational and Applied Mathematics, Vol. 164-165, 2004, pp. 587-600. doi:10.1016/j.cam.2003.11.012
[9] I. Marek and D. Szyld, “Comparison Theorems for Weak Splittings of Bound Operators,” Numerische Mathematik, Vol. 58, No. 1, 1990, pp. 387-397. doi:10.1007/BF01385632
[10] H. Kotakemori, K. Harada, M. Morimoto and H. Niki, “A Comparison Theorem for the Iterative Method with the Preconditioner (I + Smax),” Journal of Computational and Applied Mathematics, Vol. 145, No. , 2002, pp. 373-378. doi:10.1016/S0377-0427(01)00588-X
[11] A. Hadjidimos, D. Noutsos amd M. Tzoumas, “More on Modifications and Improvements of Classical Iterative Schemes for Z-Matrices,” Linear Algebra and Its Applications, Vol. 364, 2003, pp. 253-279. doi:10.1016/S0024-3795(02)00570-0
[12] T. Kohno, H. Kotakemori, H. Niki and M. Usui, “Improving the Gauss-Seidel Method for Z-Matrices,” Linear Algebra and Its Applications, Vol. 267, 1997, pp. 113-123.
[13] W. Li, “Comparison Results for Solving Preconditioned Linear Systems,” Journal of Computational and Applied Mathematics, Vol. 176, No. 2, 2005, pp. 319-329. doi:10.1016/j.cam.2004.07.022
[14] W. Li and W. Sun, “Modified Gauss-Seidel Type Methods and Jacobi Type Methods for Z-Matrices,” Linear Algebra and Its Applications, Vol. 317, 2000, pp. 227-240. doi:10.1016/S0024-3795(00)00140-3
[15] J. P. Milaszewicz, “On Modified Jacobi Linear Operators,” Linear Algebra and Its Applications, Vol. 51, 1983, pp. 127-136. doi:10.1016/0024-3795(83)90153-2
[16] J. P. Milaszewicz, “Improving Jacobi and Gauss-Seidel Iterations,” Linear Algebra and Its Applications, Vol. 93, 1987, pp. 161-170. doi:10.1016/S0024-3795(87)90321-1
[17] D. M. Young, “Iterative Solution of Large Linear Systems,” Academic Press, New York, 1971.
[18] R. S. Varga, “Matrix Iterative Analysis,” Prentice-Hall, Englewood Cliffs, 1962.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.