Preparation and Characterization of ZnO: In Transparent Conductor by Low Cost Dip Coating Technique


Transparent conducting oxide (TCO) based on indium doped zinc oxide films in the nano scale were successfully prepared using combination between dip coating and thermal decomposition process. Structural investigations confirm the polycrystalline ZnO hexagonal wurtzite phase grown along the c-axis with nano crystallite size about 10 nm. Morphology investigation shows that ZnO films consist of fine grains of average size 40 nm. This indicates that each grain contains several crystallites with different orientations. Cross sectional image presents good adhesion of the films with the substrate and the film thickness has been determined. Compositional analysis detects the indium content in the host ZnO matrix, the In/Zn ratio is close to the calculated concentration ratios of the precursor. The optical transmittance shows that the films are transparent in the UV and VIS-IR spectral region and interference fringes were observed to be thickness dependent. Preparation parameters were investigated and optimized such as dipping rate, number of deposition cycles, precursor concentration, annealing process and In/Zn ratio. Optimization process was investigated for low resistivity, high optical spectral window transmission and easy preparation process. Dipping rate in the range 2 - 38 mm/s is the most suitable range for good film quality while dipping rate range 30 - 38 mm/s produces thicker films in lower deposition cycles. The higher dipping rate produces films with lower transparency (milky films) while the small deposition rate rate requires large number of deposition cycles in order to increase the thickness. Besides, the higher dipping rate reflects lower resistivity of the deposited films. Precursor molar concentration was observed to have an essential effect on the film thickness, film quality and transparency. Lower precursor concentration requires also large number of deposition cycles for thickening the films. The higher concentration results also milky films (high scattering process by powder film). Precursor concentrations in the range 0.7 - 0.9 mol/liter were found to be the optimal for better quality and for faster deposition process. The resistivity of the films has been reduced from the range 1.5 - 2.5 kW?cm to the range 100 - 400 as the molar concentration reaches the range 0.07 - 0.09 mol/liter. The resistivity of films increases from 330 to 1686 .cm as the decomposition temperature increases from 200C to 350C. Annealing at 450C process after completing the decomposition at 200?C results the lowest resistivity with annealing time in the range 1.5 - 2 h. In/Zn percentage in the range 1.5% - 5% produces the lowest electrical resistivity. The absorption edge of the deposited films was observed to be critical affected by the preparation parameters. The band gap change was discussed through the degenerate semiconductors as well as nanostructured semiconducting materials of the energy gap confinement effect. Deposition of TCO based on ZnO:In was optimized depending on all deposition parameters forwide area, the lower cost and good performance TCO films.

Share and Cite:

S. Yamny and M. Rafea, "Preparation and Characterization of ZnO: In Transparent Conductor by Low Cost Dip Coating Technique," Journal of Modern Physics, Vol. 3 No. 9, 2012, pp. 1060-1069. doi: 10.4236/jmp.2012.39140.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Ortiz, A. Sanchez, C. Falcony, M. H. Farías, G. A. Hirata and L. Cota-Araiza, “Lack of Chemical Interaction of Hydrogenated Amorphous Silicon with Indium-Doped Zinc Oxide Transparent Conductive Films,” Journal of Non-Crystalline Solids, Vol. 103, No. 1, 1988, pp. 9-13. doi:10.1016/0022-3093(88)90409-7
[2] M. A. Martinez, J. Herrero and M. T. Gutiérrez, “Deposition of Transparent and Conductive Al-Doped ZnO Thin Films for photovoltaic Solar Cells,” Solar Energy Mate- rials and Solar Cells, Vol. 45, No. 1, 1997, pp. 75-86.
[3] S. Oktik, “Low Cost, Non-Vacuum Techniques for the Preparation of Thin/Thick Films for Photovoltaic Applications,” Progress in Crystal Growth and Characterization, Vol. 17, No. 3, 1988, pp. 171-240. doi:10.1016/0146-3535(88)90006-8
[4] P. S. Patil, “Versatility of Chemical Spray Pyrolysis Technique,” Materials Chemistry and Physics, Vol. 59, No. 3, 1999, pp. 185-198. doi:10.1016/S0254-0584(99)00049-8
[5] F. K. Shan, B. I. Kim, G. X. Liu, Z. F. Liu, J. Y. Sohn, W. J. Lee, B. C. Shin and Y. S. Yu, “Blueshift of Near Band Edge Emission in Mg Doped ZnO Thin Films and Ag- ing,” Journal of Applied Physics, Vol. 95, No. 9, 2004, pp. 4772-4776. doi:10.1063/1.1690091
[6] C. J. Xian, J. K. Ahn, N. J. Seong, S. G. Yoon, K. H. Jang and W. H. Park, “Effect of Indium Concentration on the Structural and Electrical Properties of Al-Doped ZnO Thin Films Grown by Pulsed Laser Deposition,” Journal of Physics D: Applied Physics, Vol. 41, No. 21, 2008, Article ID: 215107. doi:10.1088/0022-3727/41/21/215107
[7] C. Lennon, R. Kodama, Y. Chang, S. Sivanathan and M. Deshpande, “Al- and Al:In-Doped ZnO Thin Films Deposited by RF Magnetron Sputtering for Spacecraft Charge Mitigation,” Journal of Electronic Materials, Vol. 37, No. 9, 2008, pp. 1324-1328. doi:10.1007/s11664-008-0436-1
[8] Y. R. Park, D. Jung, K. C. Kim, S. J. Suh, T. S. Park and Y. S. Kim, “Physical Properties of Transparent Conducting Indium Doped Zinc Oxide Thin Films Deposited by Pulsed DC Magnetron Sputtering,” Journal of Electroceramics, Vol. 23, No. 2-4, 2009, pp. 536-541. doi:10.1007/s10832-008-9530-2
[9] S. Ilican, Y. Caglar, M. Caglar and B. Demerci, “Poly-Crystalline Indium-Doped ZnO Thin Films: Preparation and Characterization,” Journal of Optoelectronics and Advanced Materials, Vol. 10, No. 10, 2008, pp. 2592-2598.
[10] P. M. R. Kumar, C. S. Kartha, K. P. Vijayakumar, T. Abe, Y. Kashiwaba, F. Singh and D. K. Avasthi, “On the Properties of Indium Doped ZnO Thin Films,” Semiconductor Science and Technology, Vol. 20, No. 2, 2005, p. 120. doi:10.1088/0268-1242/20/2/003
[11] M. Caglar, Y. Caglar and S. Ilican, “Electrical and Optical Properties of Undoped and In-Doped ZnO Thin Films,” Physica Status Solidi (C), Vol. 4, No. 3, 2007, pp. 1337-1340. doi:10.1002/pssc.200673744
[12] K. Krunks, O. Bijakina, V. mikli, T. Varema and E. Mel- likov, “Zinc Oxide Thin Films by Spray Pyrolysis Method,” Physica Scripta, Vol. T79, 1999, p. 209. doi:10.1238/Physica.Topical.079a00209
[13] S. S. Shinde, P. S. Shinde, C. H. Bhosale and K. Y. Ra- jpure, “Optoelectronic Properties of Sprayed Transparent and Conducting Indium Doped Zinc Oxide Thin Films,” Journal of Physics D: Applied Physics, Vol. 41, No. 10, 2008, Article ID: 105109. doi:10.1088/0022-3727/41/10/105109
[14] M. Ohyama, H. Kozuka and T. Yoko, “Sol-Gel Preparation of ZnO Films with Extremely Preferred Orientation along (002) Plane from Zinc Acetate Solution,” Thin Solid Films, Vol. 306, No. 1, 1997, pp. 78-85. doi:10.1016/S0040-6090(97)00231-9
[15] M. Rezaee, R. Abadi, M. Behdani, H. Arabshahi and N. Hosseini, “Indium-Doped Zinc Oxide Thin Films by Sol-Gel Method,” International Review of Physics, Vol. 3, No. 4, 2009, pp. 219-223.
[16] E. J. L. Arredondo, A. Maldonado, R. Asomoza, D. R. Acosta, M. A. M. Lira and M. de la L. Olvera, “Indium-Doped ZnO Thin Films Deposited by the Sol-Gel Technique,” Thin Solid Films, Vol. 490, No. 2, 2005, pp. 132-136.
[17] M. Caglar, S. Ilican and Y. Caglar, “Influence of Dopant Concentration on the Optical Properties of ZnO:In Films by Sol-Gel Method,” Thin Solid Films, Vol. 517, No. 17, 2009, pp. 5023-5028. doi:10.1016/j.tsf.2009.03.037
[18] M. Girtan, M. Socol, B. Pattier, M. Sylla and A. Stanculescu, “On the Structural, Morphological, Optical and Electrical Properties of Sol-Gel Deposited ZnO:In Films,” Thin Solid Films, Vol. 519, No. 2, 2010, pp. 573-577. doi:10.1016/j.tsf.2010.07.006
[19] G. Machado, D. N. Guerra, D. Leinen, J. R. R. Barrado, R. E. Marotti and E. A. Dalchiele, “Indium Doped Zinc Oxide Thin Films Obtained by Electrodeposition,” Thin Solid Films, Vol. 490, No. 2, 2005, pp. 124-131. doi:10.1016/j.tsf.2005.04.042
[20] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa, “MgxZn1?xO as a II-VI Widegap Semiconductor Alloy,” Applied Physics Letters, Vol. 72, No. 19, 1998, pp. 2466-2468. doi:10.1063/1.121384
[21] N. Naghavi, A. Rougier, C. Marcel, C. Gueary, J. B. Leriche and J. M. Tarascon, “Characterization of Indium Zinc Oxide Thin Films Prepared by Pulsed Laser Deposition Using a Zn3In2O6 Target,” Thin Solid Films, Vol. 360, No. 1-2, 2000, pp. 233-240. doi:10.1016/S0040-6090(99)01098-6
[22] B. Kotlyarchuk, V. Savchuk and M. Oszwaldowski, “Preparation of Undoped and Indium Doped ZnO Thin Films by Pulsed Laser Deposition Method,” Crystal Research and Technology, Vol. 40, No. 12, 2005, pp. 1118-1123. doi:10.1002/crat.200410502
[23] K. Ramamoorthy, K. Kumar, R. Chandramohan, K. Sankaranarayana, R. Saravanan, I. V. Kityak, and P. Ramasamy, “High Optical Quality IZO (In2Zn2O5) Thin Films by PLD—A Novel Development for III-V Opto-Electronic Devices,” Optics Communications, Vol. 262, No. 1, 2006, pp. 91-96. doi:10.1016/j.optcom.2005.12.042
[24] R. K. Gupta, K. Ghosh, R. Patel, S. R. Mishra and P. K. Kahol, “Band Gap Engineering of ZnO Thin Films by In2O3 Incorporation,” Journal of Crystal Growth, Vol. 310, No. 12, 2008, pp. 3019-3023. doi:10.1016/j.jcrysgro.2008.03.004
[25] J. H. Lee and B. O. Park, “Transparent Conducting ZnO:Al, In and Sn Thin Films Deposited by the Sol-Gel Method,” Thin Solid Films, Vol. 426, No. 1-2, 2003, pp. 94-99. doi:10.1016/S0040-6090(03)00014-2
[26] H. Gomez, A. Maldonado and J. Palacios-Gomez, “Char- acterization of Indium-Doped Zinc Oxide Films Deposited by Pyrolytic Spray with Different Indium Com- pounds as Dopants,” Thin Solid Films, Vol. 293, No. 1-2, 1997, pp. 117-123.
[27] A. F. Aktaruzzaman, G. L. Sharma and L. K. Malhotra, “Electrical, Optical and Annealing Characteristics of ZnO: Al Films Prepared by Spray Pyrolysis,” Thin Solid Films, Vol. 198, 1991, pp. 67-74. doi:10.1016/0040-6090(91)90325-R
[28] A. Tiburcio-Silver, A. Sanchez-Juarez and A. Avila-Gar- cia, “Properties of Gallium-Doped ZnO Deposited onto Glass by Spray Pyrolysis,” Solar Energy Materials and Solar Cells, Vol. 55, No. 1-2, 1988, pp. 3-10..
[29] K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata and S. Niki, “Band-Gap Modified Al-Doped Zn1?xMgxO Transparent Conducting Films Deposited by Pulsed Laser Deposition,” Applied Physics Letters, Vol. 85, No. 8, 2004, pp. 1374-1376. doi:10.1063/1.1784544
[30] T. Minami, K. Oohashi, S. Takata and N. Ogawa, “Preparations of ZnO:Al Transparent Conducting Films by d.c. Magnetron Sputtering,” Thin Solid Films, Vol. 193-194, Part 2, 1990, pp. 721-729. doi:10.1016/0040-6090(90)90224-2
[31] H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafa and D. B. Chrisey, “Indium Tin Oxide Thin Films for Organic Light-Emitting Devices,” Applied Phys- ics Letters, Vol. 74, No. 23, 1999, pp. 3444-3446. doi:10.1063/1.124122
[32] H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafa and D. B. Chrisey, “Electrical, Optical, and Structural Properties of Indium-Tin-Oxide Thin Films for Organic Light-Emitting Devices,” Journal of Applied Physics, Vol. 86, No. 11, 1999, pp. 6451-6461. doi:10.1063/1.371708
[33] J. Baltazar-Rodrigues, J. C. De Lima, C. E. M. Campos and T. A. Grandi, “Temperature Effects on Mechanically Alloyed Nanometric ZnSe Powder,” Powder Technology, Vol. 189, No. 1, 2009, pp. 70-73. doi:10.1016/j.powtec.2008.06.005
[34] M. A. Rafea, A. A. M. Farag and N. Roushdy, “Controlling the Crystallite Size and Influence of the Film Thickness on the Optical and Electrical Characteristics of Nanocrystalline Cu2S Films,” Materials Research Bulletin, Vol. 47, No. 2, 2012, pp. 257-266 doi:10.1016/j.materresbull.2011.11.035
[35] L. E. Brus, “A Simple Model for the Ionization Potential, Electron Affinity, and Aqueous Redox Potentials of Small Semiconductor Crystallites,” Journal of Chemical Physics, Vol. 79, No. 11, 1983, pp. 5566-5571. doi:10.1063/1.445676
[36] L. E. Brus, “Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size De- pendence of the Lowest Excited Electronic State,” Journal of Chemical Physics, Vol. 80, No. 9, 1984, pp. 4403-4409. doi:10.1063/1.447218
[37] G. Sbemeglieri, S. Groppeui, P. Nell, V. Lantto, H. Torvela, P. Romppainen and S. Leppsvuori, “Response to Nitric Oxide of Thin and Thick SnOz Films Containing Trivalent Additives,” Sensors and Actuators, Vol. 1, 1990, pp. 79-82.
[38] J.-C. Lin, K.-C. Peng, T.-Y. Yeh and S.-L. Lee, “On the Structure and Characterization of Al, Sc-Co-Doped ZnO-Films Varying with 0 - 2.37 wt.% Sc Contents,” Thin Solid Films, Vol. 517, No. 17, 2009, pp. 4715-4719.
[39] J. C. Manifacier, J. Gasiot and J. P. Fillard, “A Simple Method for the Determination of the Optical Constants n, k and the Thickness of a Weakly Absorbing Thin Film,” Journal of Physics E: Scientific Instruments, Vol. 9, No. 11, 1976, pp. 1002-1004.
[40] J. I. Pankove, “Optical Processes in Semiconductors,” Prentice-Hall, Englewood Cliffs, 1971.
[41] V. R. Shinde, T. P. Gujar, C. D. Lokhande, R. S. Mane and S. H. Han, “Mn Doped and Undoped ZnO Films: A Comparative Structural, Optical and Electrical Properties Study,” Materials Chemistry and Physics, Vol. 96, No. 2-3, 2006, pp. 326-330. doi:10.1016/j.matchemphys.2005.07.045
[42] J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, G. Li and J. G. Hou, “Indium-Doped Zinc Oxide Nanobelts,” Chemical Physics Letters, Vol. 387, No. 4-6, 2004, pp. 466-470.. doi:10.1016/j.cplett.2004.02.045
[43] L. M. Li, C. C. Li, J. Zhang, Z. F. Du, B. S. Zou, H. C. Yu, Y. G. Wang and T. H. Wang, “Bandgap Narrowing and Ethanol Sensing Properties of In-Doped ZnO Nano- wires,” Nanotechnology, Vol. 18, No. 22, 2007, pp. 225504-225508. doi:10.1088/0957-4484/18/22/225504
[44] S. Chirakkara, K. K. Nanda and S. B. Krupanidhi, “Pulsed Laser Deposited ZnO:In as Transparent Conducting Oxide,” Thin Solid Films, Vol. 519, No. 11, 2011, pp. 3647-3652.
[45] S. Gad, M. A. Rafea and Y. Badr, “Optical and Photoconductive Properties of Pb0.9Sn0.1Se Nano-Structured Thin Films Deposited by Thermal Vacuum Evaporation and Pulsed Laser Deposition,” Journal of Alloys and Compounds, Vol. 515, 2012, pp. 101-107.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.