Effect of the Heat Treatments on the Dopes Segregation in Polycrystalline Silicon Films


In this work we are interested in studying the effect of the heat treatments on the dopant segregation at the grain boundaries in the polycrystalline silicon films. The obtained results have shown that the heat treatments reduce the number of segregation sites at the grains boundaries, and consequently they limit the structural changes that can appear there and the quantity of the dope atoms that can accumulate in these boundaries. In addition they are more and more dopant that are found inside the grains when the temperature of the heat treatment increases. On the other hand, we established that the arsenic atoms have a strong tendency to the segregation than the boron atoms, and we have noticed a strong migration of arsenic atoms from the boundaries towards the grains under the effect of the heat treatments. It was also shown that the segregation of arsenic atoms at the grains boundaries is about 4 times higher than that of the boron atoms.

Share and Cite:

S. Silini, B. Chouial, B. Hadjoudja, O. Benhalima, S. Yousfi and A. Chibani, "Effect of the Heat Treatments on the Dopes Segregation in Polycrystalline Silicon Films," Journal of Modern Physics, Vol. 3 No. 9, 2012, pp. 1046-1049. doi: 10.4236/jmp.2012.39138.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. Hadjoudja and A. Chibani, “Global Model for Electrical Conduction in Polysilicon Layers,” Annales de Chimie—Science des Matériaux, Vol. 31, No. 1, 2006, pp. 121-134. doi:10.3166/acsm.31.121-134
[2] S. Honda, T. Mates, M. Ledinsky, J. Oswald, A. Fejfar, J. Koeka, T. Yamazaki, Y. Uraoka and T. Fuyuki, “Effect of Hydrogen Passivation on Polycrystalline Silicon Thin Films,” Thin Solid Films, Vol. 487, No. 1-2, 2005, pp. 152-156. doi:10.1016/j.tsf.2005.01.056
[3] A. Haddad, T. Inokuma, Y. Kurata and S. Hasegawa, “Characterization of Structure and Role of Different Textures in Polycrystalline Si Films,” Journal of Non-Crystalline Solids, Vol. 351, No. 24-26, 2005, pp. 2107-2114. doi:10.1016/j.jnoncrysol.2005.05.007
[4] D. D. Malinovska, O. Angelov, M. S. Vassileva, M. Ka- menova and J. C. Pivin, “Polycrystalline Silicon Thin Films on Glass Substrate,” Thin Solid Films, Vol. 451- 452, 2004, pp. 303-307. doi:10.1016/j.tsf.2003.11.054
[5] A. Slaoui, E. Pihan, I. Ka, N. A. Mbow, S. Roques and J. M. Koebel, “Passivation and Etching of Fine-Grained Polycrystalline Silicon Films by Hydrogen Treatment,” Solar Energy Materials & Solar Cells, Vol. 90, No. 14, 2006, pp. 2087-2098. doi:10.1016/j.solmat.2006.02.004
[6] B. Ai, H. Shen, Z. Liang, Z. Chen, G. Kong and X. Liao, “Electrical Properties of B-Doped Polycrystalline Silicon Thin Films Prepared by Rapid Thermal Chemical Vapour Deposition,” Thin Solid Films, Vol. 497, No. 1-2, 2006, pp. 157-162. doi:10.1016/j.tsf.2005.10.069
[7] R. Mahamdi, F. Mansour, E. Scheid, B. T. Boyer and L. Jalabert, “Boron Diffusion and Activation during Heat Treatment in Heavily Doped Polysilicon Thin Films for P+ Metal-Oxide-Semiconductor Transistors Gates,” Japanese Journal of Applied Physics, Vol. 40, 2001, pp. 6723- 6727. doi:10.1143/JJAP.40.6723
[8] J. Y. W. Seto, “The electrical properties of polycrystalline silicon films,” Journal of Applied Physics, Vol. 46, No. 12, 1975, pp. 5247-5254. doi:10.1063/1.321593
[9] B. Hadjoudja, A. Chibani, R. Zeggari and B. Chouial, “Modélisation des Variations de la Résistivité des Couches de Silicium Polycristallin,” Physical & Chemical News, Vol. 13, 2003, pp. 85-90.
[10] M. M. Mandurah, K. C. Saraswat and T. I. Kamins, “A Model for Conduction in Polycrystalline Silicon—Part I: Theory,” IEEE Transactions on Electron Devices, Vol. 28, No. 10, 1981, pp. 1163-1171. doi:10.1109/T-ED.1981.20504
[11] L. Mei and R. W. Dutton, “A Process Simulation Model for Multilayer Structures Involving Polycrystalline Silicon,” IEEE Transactions on Electron Devices, Vol. 29, No. 11, 1982, pp. 1726-1734. doi:10.1109/T-ED.1982.21017
[12] J. Murota and T. Sawai “Electrical Characteristics of Heavily Arsenic and Phosphorus Doped Polycrystalline Silicon,” Journal of Applied Physics, Vol. 53, No. 5, 1982, pp. 3702-3708. doi:10.1063/1.331157

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.