Skeletal extension rate of the reef building coral Porites species from Aqaba and their environmental variables

DOI: 10.4236/ns.2012.49097   PDF   HTML   XML   5,110 Downloads   7,804 Views   Citations


Annual skeletal extension rates of the sclera-actinian corals Porites species were investigated in 32 colonies from the northern Gulf of Aqaba fringing reef at various depths (1 - 42 m). All corals reveal clear and regular skeletal density banding patterns. Results showed that the high-density annual growth bands were formed during winter and the low-density annual growth bands during summer. The mean annual extension rates of the studied corals reveal a large inter-colony variability with values ranged between 2.36 to 20.0 mm/year. While a general trend of decreasing coral extension rate with depth was observed and best explained by a simple exponential model, the rates clustered into two groups: 10.86 ± 2.54 mm/year in water depths less than 10 m, and 5.23 ± 1.99 mm/year below 12 m. Light intensity seems to be the primary environmental factor responsible for decreasing coral extension rate with depth since the effect of other environmental parameters could be neglected from the Gulf of Aqaba. Time series record of the mean annual coral extension rate showed a slight increasing linear trend which could be linked to increase seawater temperature over the period of time represented.

Share and Cite:

Al-Rousan, S. (2012) Skeletal extension rate of the reef building coral Porites species from Aqaba and their environmental variables. Natural Science, 4, 731-739. doi: 10.4236/ns.2012.49097.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P?tzold, J. (1984) Growth rhythms recorded in stable isotope and density bands in reef coral Porites lobata (Cebu, Phillippines). Coral Reefs, 3, 87-90. doi:10.1007/BF00263758
[2] Linsley, B.K., Dunbar, R.B., Wellington, G.M. and Mucciarone, D.A. (1994) A coral based reconstruction of intertropical convergence zone variability over central America since 1707. Journal of Geophysical Research, 99, 9977-9994. doi:10.1029/94JC00360
[3] Felis, T. and P?tzold, J. (2003) Climate records from corals. In: Wefer, G., Lamy, F. and Mantoura, F., Eds., Marine Science Frontiers for Europe, Springer, Berlin, 11-27. doi:10.1007/978-3-642-55862-7_2
[4] Corrège, T. (2006) Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeogeography Palaeoclimatology Palaeoecology, 232, 408- 428. doi:10.1016/j.palaeo.2005.10.014
[5] Eakin, M. and Grottoli, A.G. (2006) Paleo-climate changes and corals. In: Phinney, J., Skirving, W., Kleypas, J., Hoegh-Guldberg, O. and Strong, A.E., Eds., Coral Reefs and Climate Change: Science and Management. Coastal and Estuarine Studies, 61, 33-54.
[6] Gischler, E., Hudson, J. H. and Storz, D. (2009) Growth of pleistocene massive corals in south Florida: Low skeletal extension-rates and possible ENSO, decadal, and multi-decadal cyclicities. Coral Reefs, 28, 823-830. doi:10.1007/s00338-009-0537-1
[7] Chalker, B.E. and Barnes, D.J. (1990) Gamma densitometry for the measurement of coral skeletal density. Coral Reefs, 9, 11-23. doi:10.1007/BF00686717
[8] Logan, A. and Tomascik, T. (1991) Extension growth rates in two coral species from high-latitude reefs of Bermuda. Coral Reefs, 10, 155-160. doi:10.1007/BF00572174
[9] Guzman, H.M. and Cortes, J. (1989) Growth rates of eight species of scleractinian corals in the eastern Pacific (Costa Rica). Bulletin Marine Science, 44, 1186-1194.
[10] Dullo, W.-Chr. (2005) Coral growth and reef growth: A brief review. Facies, 51, 33-48. doi:10.1007/s10347-005-0060-y
[11] Guzman, H.M., Cipriani, R. and Jackson J.B.C. (2008) Historical decline in coral reef growth after the Panama Canal. Ambio, 37, 342-346. doi:10.1579/07-A-372.1
[12] Knutson, D.W., Buddemeier, R.W. and Smith, S.V. (1972) Coral chronometers: seasonal growth bands in reef corals. Science, 177, 270-272. doi:10.1126/science.177.4045.270
[13] Scoffin, T.P., Tudhope, A.W., Brown, B.E., Chansang, H. and Cheeney, R.F. (1992) Patterns and possible environmental controls of skeletogenesis of Porites lutea, South Thailand. Coral Reefs, 11, 1-11. doi:10.1007/BF00291929
[14] Buddemeier, R.W. and Kinzie, R.A. (1976) Coral growth. Oceanography and Marine Biology: Annual Review, 14, 183-225.
[15] Lough, J.M. and Barnes, D.J. (1997) Coral records of past climates and environments. Bulletin of Australian Meteorological and Oceanographic Society, 10, 84-90.
[16] Lough, J.M. and Barnes, D.J. (2000) Environmental controls on growth of the massive coral Porites. Journal of Experimental Marine Biology and Ecology, 245, 225-243. doi:10.1016/S0022-0981(99)00168-9
[17] Lough, J.M. and Cooper, T.F. (2011) New insights from coral growth band studies in an era of rapid environmental change. Earth Science Reviews, 108, 170-184. doi:10.1016/j.earscirev.2011.07.001
[18] P?tzold, J. and Wefer, G. (1992) Bermuda coral reef record of the last 1000 years. 4th International Conference on Paleoceanography. Geol.-Pal?ont. Inst Univ Kiel, Kiel, 224-225.
[19] P?tzold, J., Bickert, T., Flemming, B., Grobe, H. and Wefer, G. (1999) Holoz?nes Klima des Nordatlantiks rekonstruiert aus massiven Korallen von Bermuda. Natur und Museum, 129, 165-177.
[20] Crossland, C.J. (1988) Latitudinal comparisons of coral reef structure and function. Proceeding of the 6th International Coral Reef Symposium, 1, 221-226.
[21] Isdale, P.J. (1983) Geographical patterns in coral growth rates on the Great Barrier Reef. In: Baker, J.T., Carter, R.M., Sammarco, P.W. and Stark, K.P., Eds, Inaugural Great Barrier Reef Conference, James Cook University Press, Townsville, 28 August-2 September 1983, 327- 330.
[22] Risk, M.J. and Sammarco, P.W. (1991). Cross-shelf trends in skeletal density of the massive coral Porites lobata from the Great Barrier Reef. Marine Ecology Progress Series, 69, 195-200. doi:10.3354/meps069195
[23] Hubbard, D.K. and Scaturo, D. (1985) Growth rates for seven scleractinean corals from Cane Bay and Salt River, St. Croix, USVI. Bulletin of Marine Sciences, 36, 325- 338.
[24] Schuhmacher, H., Kienne, W. and Dullo, W-Chr. (1995) Factors controlling Holocene Reef growth: An interdisciplinary approach. Facies, 32, 145-188. doi:10.1007/BF02536867
[25] Felis, T., and Rimbu, N. (2010) Mediterranean climate variability documented in oxygen isotope records from northern Red Sea corals—A review, Global and Planetary Change, 71, 232-241. doi:10.1016/j.gloplacha.2009.10.006
[26] Gvirtzman, G., and Buchbinder, B. (1978) The Late Tertiary of the Coastal Plain and Continental Shelf of Israel and its bearing on the history of the Eastern Mediterranean. Deep Sea Drilling Project, 42, 1195-1222.
[27] Reiss, Z. and Hottinger, L. (1984) The gulf of Aqaba: Ecological micropaleontology. Springer-Verlag, Berlin, 345. doi:10.1007/978-3-642-69787-6
[28] Manasrah, R. (2002) The general circulation and water masses characteristics in the gulf of Aqaba and northern Red Sea. Ph.D. Thesis, Universit?t Rostock, Rostock.
[29] Levanon-Spanier, I., Padan, E. and Reiss, Z. (1979) Primary production in a desert enclosed sea-the gulf of Elat (Aqaba), Red Sea. Deep Sea Research, 26, 673-685. doi:10.1016/0198-0149(79)90040-2
[30] Klein, R., P?tzold, J., Wefer, G. and Loya, Y. (1993) Depth-related timing of density band formation in Porites spp. corals from the Red Sea inferred from X-ray chronology and stable isotope composition. Marine Ecology Progress Series, 97, 99-104. doi:10.3354/meps097099
[31] Al-Rousan, S., Al-Moghrabi, S., P?tzold, J. and Wefer, G. (2003) Stable oxygen isotopes in Porites corals monitor weekly temperature variations in the northern gulf of Aqaba, Red Sea. Coral Reefs, 22, 346-356. doi:10.1007/s00338-003-0321-6
[32] Al-Rousan, S., Al-Moghrabi, S., P?tzold, J. and Wefer, G. (2002) Environmental and biological effects on the stable oxygen isotope records of corals in the northern gulf of Aqaba, Red Sea. Marine Ecology Progress Series, 239, 301-310. doi:10.3354/meps239301
[33] Felis, T., P?tzold, J. and Loya, Y. (2003) Mean oxygen- isotope signatures in Porites spp. corals: Inter-colony variability and correction for extension-rate effects. Coral Reefs, 22, 328-336. doi:10.1007/s00338-003-0324-3
[34] Rosenfeld, M., Yam, R., Shemesh, A. and Loya, Y. (2003) Implication of water depth on stable isotope composition and skeletal density banding patterns in a Porites lutea colony: results from a long-term translocation experiment. Coral Reefs, 22, 337-345. doi:10.1007/s00338-003-0333-2
[35] Klein, R. and Loya, Y. (1991) Skeletal growth and density patterns of two Porites corals from the gulf of Eilat, Red Sea. Marine Ecology Progress Series, 77, 253-259. doi:10.3354/meps077253
[36] Heiss, G.A., Dullo, W.-Chr. and Reijmer, J.J.G. (1993) Shortand long-term growth history of massive Porites sp. from Aqaba (Red Sea). Senckenbergiana Maritima, 23, 135-141.
[37] Heiss, G.A. (1996) Variation in annual band width of Porites sp. from Aqaba, Gulf of Aqaba, Red Sea. Bulletin of Marine Science, 59, 393-403.
[38] Heiss, G. A., Dullo, W.-Chr., Joachimski, M.M, Reijmer, J.J.G. and Schuhmacher, H. (1999) Increased seasonality in the gulf of Aqaba, Red Sea, recorded in the oxygen isotope record of a Porites lutea coral. Senckenbergiana Maritima, 30, 17-26. doi:10.1007/BF03042826
[39] Felis, T., P?tzold, J., Loya, Y., and Wefer, G. (1998) Vertical water mass mixing and plankton blooms recorded in skeletal stable carbon isotopes of a Red Sea coral. Journal of Geophysical Research, 103, 30731-30739. doi:10.1029/98JC02711
[40] Felis, T., Lohmann, G., Kuhnert, H., Lorenz, S.J., Scholz, D., P?tzold, J., Al-Rousan, S.A. and Al-Moghrabi, S.M. (2004) Increased seasonality in Middle East temperatures during the last interglacial period. Nature, 429, 164-168. doi:10.1038/nature02546
[41] Heiss, G.A. (1994) Coral reefs in the Red Sea: Growth, production and stable isotopes. GEOMAR Report 34, 1-143.
[42] Chalker, B.E. and Taylor, D.L. (1975) Light-enhanced calcification, and the role of oxidative phosphorylation in calcification of the coral Acropora cervicornis. Proceeding Royal Society London Bulletin, 190, 323-331. doi:10.1098/rspb.1975.0096
[43] Adey, W. (1978) Coral reef morphogenesis: A multi-dimensional model. Science, 202, 831-837. doi:10.1126/science.202.4370.831
[44] Baker, P.A. and Weber J.N. (1975) Coral growth rate: Variation with depth. Earth Planetary Science Letters, 27, 57-61. doi:10.1016/0012-821X(75)90160-0
[45] Hudson, H.J. (1981) Growth rates in Montastrea annularis: A record of environmental change in the Florida Keys. Proceeding of the 4th International Coral Reef Symposium, 233-240.
[46] Kampmann, H. (2001) Photobiologische, energtische und genetische aspekt des mutualistischen zusammen lebenes von Zooxanthellae (Symbiodininm sp.) und Steinkorrallen im golf von Aqaba. Jordanien. Dissertation, Mathematisch-Naturwissenschaftliche Facultaet, Universitaet zu Koeln.
[47] Bosscher, H. (1992) Growth potential of coral reefs and carbonate platforms. Ph.D. Thesis, Vrije Universiteit Amsterdam, Amsterdam.
[48] Mutti, M. and Hallock, P. (2003) Carbonate systems along nutrient and temperature gradients: Some sedimentological and geochemical constraints. International Journal of Earth Sciences, 92, 465-474. doi:10.1007/s00531-003-0350-y

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.