Temperature Dependent Phase Behavior of Pseudo-Ternary Thiourea X-100 Surfactant +1-Hexanol/Oil/Water Systems

Abstract

Temperature dependent phase behavior of Pseudo-ternary Thiourea X-100 + 1-hexanol (1:5 molar ratios)/oil/water systems is reported. The influence of nature of hydrocarbon oil and type of electrolytes (weak as well as strong) has been investigated on the temperature induced phase behavior of the ternary system. At surfactant concentration, Φs = 40%, a “nose shaped” microemulsion region is observed. Below one-phase microemulsion region, Lα phase appears. The presence of NaCl decreases the domain size of 1Φ micellar region whereas oxalic acid first decreases the domain below Φw < 18 and then increases above Φw > 18 in the lower boundry of the phase diagram. The critical weight fraction of water, Φwcri decreases in presence of both electrolytes. However, Φwmax increases in presence of oxalic acid and remains constant in presence of NaCl as compared to salt free system. Furthermore, when cyclohexane was replaced by a longer straight chain hydrocarbon, dodecane, the domain of the one-phase microemulsion region is tremendously increased.

Share and Cite:

M. Zul Helmi Rozaini, "Temperature Dependent Phase Behavior of Pseudo-Ternary Thiourea X-100 Surfactant +1-Hexanol/Oil/Water Systems," Open Journal of Physical Chemistry, Vol. 2 No. 3, 2012, pp. 169-175. doi: 10.4236/ojpc.2012.23022.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Belcher and L. Gordon, “Kinetics of Precipitation,” Pergamon Press, Oxford, 1964.
[2] A. Bonazza, P. Brimblecombe, C. M. Grossi and C. Sabbioni, “Carbon in Black Crusts from the Tower of London,” Environmental Science & Technology, Vol. 41, No. 12, 2007, pp. 4199-4204. doi:10.1021/es062417w
[3] L. Brecevic and D. Skrtic, “Transformation of Calcium Oxalate Hydrates,” Journal of Crystal Growth, Vol. 74, 1986, pp. 399-408. doi:10.1016/0022-0248(86)90131-4
[4] H. H. M. Darweesh, “Building Materials from Siliceous Clay and Low Grade Dolomite Rocks,” Ceramics International, Vol. 27, No. 1, 2001, pp. 45-50. doi:10.1016/S0272-8842(00)00040-7
[5] B. L. Davis and G. Jixiang, “Airborne Particulate Study in Five Cities of China,” Atmospheric Environment, Vol. 34, No. 17, 2000, pp. 2703-2711. doi:10.1016/S1352-2310(99)00528-2
[6] B. Ford, I. Macleod and P. Haydock, “Rock Art Pigments from the Kimberly Region of Western Australia: Identification of the Minerals and Conversion Mechanisms,” Studies in Conservation, Vol. 39, 1994, pp. 57-69. doi:10.2307/1506491
[7] J. H. Huang, Z. F. Mao and M. F. Luo, “Effect of Anionic Surfactant on Vaterite CaCO3,” Materials Research Bulletin, Vol. 42, No. 12, 2007, pp. 2184-2191. doi:10.1016/j.materresbull.2007.01.005
[8] T. S. Jeong, J. H. Kim, M. S. Han, K. Y. Lim and C. J. Youn, “X-Ray and Cathodoluminescence Study on the Effect of Intentional Long Time of Succinic Acid on Calcium Carbonate,” Journal of Crystal Growth, Vol. 280, No. 3-4, 2005, pp. 357-363. doi:10.1016/j.jcrysgro.2005.04.002
[9] X. Liu, H. C. Monger and W. G. Whitford, “Calcium Carbonate in Termite Galleries-Biomineralization or Upward Transport,” Biogeochemistry, Vol. 82, No. 3, 2007, pp. 241-250. doi:10.1007/s10533-006-9067-x
[10] S. Mann, J. M. Didymus, N. P. Sanderson and E. J. A. Samper, “Effects of Grazing and Topography on Dust Flux,” Journal of the Chemical Society, Faraday Transactions, Vol. 86, 1990, pp. 1873-1880. doi:10.1039/ft9908601873
[11] M. G. S. Matteini, “The Protective Effect of Ammonium Oxalate Treatment on the Surface of Wall Paintings,” Painted Facades Eurocare Project, Vienna, 1996, pp. 95-101.
[12] M. Z. H. Rozaini and P. Brimblecombe, “The Solubility of Sodium Dicarboxylate in the Atmospheric Aerosols,” Journal of Chemical Thermodynamic, Vol. 41, 2009, pp. 980-983. doi:10.1016/j.jct.2009.03.017
[13] M. Z. H. Rozaini and P. Brimblecombe, “The Odd-Even Behaviour of Dicarboxylic Acids Solubility in the Atmospheric Aerosols,” Water, Air & Soil Pollution (Springer), Vol. 198, 2009, pp. 65-75. doi:10.1007/s11270-008-9826-5
[14] H. Okochi and P. Brimblecombe, “Potential Trace Metal-Organic Complexation in the Atmosphere,” Scientific World, Vol. 2, 2002, pp. 767-786. doi:10.1100/tsw.2002.132
[15] C. Sabbioni, “Contribution of the Atmospheric Deposition to the Formation of Damage Layers,” Science of the Total Environment: The Deterioration of Monuments, Vol. 167, No. 1-3, 1995, pp. 49-55. doi:10.1016/0048-9697(95)04568-L
[16] C. Sabbioni and G. Zappia, “Atmospheric-Derived Element Tracers on Damaged Stone,” The Science of the Total Environment, Vol. 126, No. 1-2, 1992, pp. 35-48. doi:10.1016/0048-9697(92)90482-8
[17] S. Signorelli, C. Peroni, M. Camaiti and F. Fratini, “The Presence of Vaterite in Bonding Mortars of Marble Inlays from Florence Cathedral,” Mineralogical Magazine, Vol. 60, No. 4, 1996, pp. 663-665. doi:10.1180/minmag.1996.060.401.13
[18] O. S?hnel and J. W. Mullin, “Long-Term and Thermally Stable Superhydrophobic Surfaces of Carbon Nanofibers,” Journal of Colloid Interface Science, Vol. 123, 1988, pp. 43-51.
[19] H. Wei, Q. Shen, Y. Zhao, D.-J. Wang and D.-F. Xu, “Influence of polyvinylpyrrolidone on the Precipitation of Calcium Carbonate and on the Transformation of Vaterite to Calcite,” Journal of Crystal Growth, Vol. 250, No. 3-4, 2003, pp. 516-524. doi:10.1016/S0022-0248(02)02484-3
[20] A.-W. Xu, M. Antonietti, H. Colfen and Y.-P. Fang, “Uniform Hexagonal Plates of Vaterite CaCO3 Mesocrystals Formed by Biomimetic Mineralization,” Advanced Functional Materials, Vol. 16, No. 7, 2006, pp. 903-908. doi:10.1002/adfm.200500716

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.