Factorial Designs Application to Study Enhanced Bioremediation of Soil Artificially Contaminated with Weathered Bonny Light Crude Oil through Biostimulation and Bioaugmentation Strategy


The objective of this study was designed to evaluate the effects of biostimulation and bioaugmentation amendment agents (NPK fertilizer, Tween 80 and mixed culture) on the bioremediation of tropical soil samples artificially contaminated with Weathered Bonny Light Crude Oil (WBLCO). Response Surface Methodology (RSM) with Box Behnken Design (BBD) was used with three levels and three factors of NPK fertilizer (2 - 6 g), Tween 80 (5 - 15 mg/l) and mixed culture (0.5 - 1.5 g/l) as independent variables and WBLCO removal as dependent variable (response) in a six weeks remediation period. The results showed that the rate of WBLCO removal generally increased with increase in the amount of NPK fertilizer, Tween 80 and mixed culture (biomass), respectively. A statistically significant (P < 0.0001) second-order quadratic regression model for WBLCO removal (using design-expert statistical program (v. 6.0.8)) with a coefficient of determination, R (=0.9996) was obtained. Numerical optimization technique based on desirability function was carried out to optimize the bioremediation process. The optimum values for biostimulation and bioaugmentation amendment agents to achieve a predicted maximum WBLCO removal of 84.88 percent were found to be: NPK fertilizer, 4.25 g; Tween 80, 10.22 mg/l and mixed culture, 0.46 g/l. At this optimum point, the observed WBLCO removal was found to be 83.79 percent. The statistical analyses and the closeness of the experimental results and model predictions show the reliability of the regression model and thus, biostimulation and bioaugmentation of indigenous microbial density and activity can reduce remediation period of petroleum hydrocarbon contaminated environment and subsequently the cost of remediation.

Share and Cite:

S. Agarry and O. Ogunleye, "Factorial Designs Application to Study Enhanced Bioremediation of Soil Artificially Contaminated with Weathered Bonny Light Crude Oil through Biostimulation and Bioaugmentation Strategy," Journal of Environmental Protection, Vol. 3 No. 8, 2012, pp. 748-759. doi: 10.4236/jep.2012.38089.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. J. Kennish, “Practical Handbook of Marine Science,” 3rd Edition, CRC Press Inc., Boca Raton, 2001.
[2] O. A. T. Ebuehi, I. B. Abibo, P. D. Shekwolo, K. I. Sigismund, A. Adoki, et al., “Remediation of Crude Oil Contaminated Soil by Enhanced Natural Attenuation Technique,” Environmental Engineering, Vol. 9, No. 1, 2005, pp. 103-106.
[3] D. Wolicka, A. Suszek, A. Borkowski and A. Bielecka, “Application of Aerobic Microorganisms in Bioremediation In-Situ of Soil Contaminated by Petroleum Products,” Bioresource Technology, Vol. 100, No. 13, 2009, pp. 3221-3227. doi:10.1016/j.biortech.2009.02.020
[4] Y. Murakami, S. Kitamura, K. Nakayama, S. Matsuoka and H. Sakaguchi, “Effects of Heavy Oil in the Developing Spotted Halibut, Verasper Variegates,” Marine Pollution Bulletin, Vol. 57, No. 6-12, 2008, pp. 524-528. doi:10.1016/j.marpolbul.2008.02.043
[5] P. A. Kulakow and L. Erickson, “A Nationwide Feld Test of Petroleum Contaminated Soils,” Proceedings of the 2000 Conference on Hazardous Waste Research, Denver, 23-25 May 2000, pp. 283-298.
[6] J. G. Leahy and R. R. Colwell, “Microbial Degradation of Hydrocarbons in the Environment,” Microbiology Review, Vol. 54, No. 3, 1999, pp. 305-315.
[7] R. Margesin and F. Schinner, “Bioremediation (Natural Attenuation and Biostimulation) of Diesel-Oil-Contami- nated Soil in an Alpine Glacier Skiing Area,” Applied Environmental Microbiology, Vol. 67, No. 7, 2001, pp. 3127- 3133. doi:10.1128/AEM.67.7.3127-3133.2001
[8] D. Sarkar, M. Ferguson, R. Datta and S. Birnbaum, “Bioremediation of Petroleum Hydrocarbons in Contaminated Soils: Comparison of Biosolids Addition, Carbon Supplementation, and Monitored Natural Attenuation,” Environmental Pollution, Vol. 136, No. 1, 2005, pp. 187-195. doi:10.1016/j.envpol.2004.09.025
[9] H. Y. Chien, C. M. Kao, C. J. Jou, P. Y. Yang and C. C. Huang, “Application of Enhanced Bioremediation to Clean up Diesel-Oil Contaminated Soils: Laboratory Microcosm Study,” Journal of Biotechnology, Vol. 136, 2008, p. S682. doi:10.1016/j.jbiotec.2008.07.1581
[10] Q. Lin and I. A. Mendelssohn, “Potential of Restoration and Phytoremediation with Juncus roemerianus for Diesel-Contaminated Coastal Wetlands,” Ecology Engineering, Vol. 35, No. 1, 2009, pp. 85-91. doi:10.1016/j.ecoleng.2008.09.010
[11] H. Lei, M. Ting, L. Dan, L. Feng-Lai, L. Ru-Lin, et al., “Optimization of Nutrient Component for Diesel Oil Degradation by Rhodococcus erythropolis,” Marine Pollution Bulletin, Vol. 56, No. 10, 2008, pp. 1714-1718. doi:10.1016/j.marpolbul.2008.07.007
[12] H. Joo, P. M. Ndegwa, M. Shoda and C. Phae, “Bioremediation of Oil-Contaminated Soil Using Candida catenulata and Food Waste,” Environmental Pollution, Vol. 156, No. 3, 2008, pp. 891-896. doi:10.1016/j.envpol.2008.05.026
[13] P. F. Greenwood, S. Wibrow, S. J. George and M. Tibbett, “Sequential Hydrocarbon Biodegradation in a Soil from Arid Coastal Australia, Treated with Oil Under Laboratory Controlled Conditions,” Organic Geochemistry, Vol. 39, No. 9, 2008, pp. 1336-1346. doi:10.1016/j.orggeochem.2008.05.005
[14] L. Bradi, A. Mattei, S. Steffan and M. Marzona, “Hydrocarbon Degradation by a Soil Microbial Population with ?-Cyclodeztrin as Surfactant to Enhance Bioavailability,” Enzyme Microbial Technology, Vol. 27, 2000, pp. 709- 713.
[15] K. T. Semple, B. J. Reid and T. R. Fermor, “Impact of Composting Strategies on the Treatment of Soils Contaminated with Organic Pollutants,” Environmental Pollution, Vol. 112, No. 2, 2001, pp. 269-283. doi:10.1016/S0269-7491(00)00099-3
[16] W. Namkoong, E. Y. Hwang, J. S. Park and J. Y. Choi, “Bioremediation of Diesel-Contaminated Soil with Com- posting,” Environmental Pollution, Vol. 119, No. 1, 2002, pp. 23-31. doi:10.1016/S0269-7491(01)00328-1
[17] J. Sabate, M. Vinas and A. M. Solanas, “Laboratory Scale Bioremediation Experiments on Hydrocarbon-Contaminated Soils,” International Biodeterioration & Biodegradation, Vol. 54, No. 1, 2004, pp. 19-25. doi:10.1016/j.ibiod.2003.12.002
[18] F. M. Ghazali, R. N. Z. A. Rahman, A. B. Salleh and M. Basri, “Biodegradation of Hydrocarbons in Soil by Microbial Consortium,” International Biodeterioration and Biodegradation, Vol. 54, No. 1, 2004, pp. 61-67. doi:10.1016/j.ibiod.2004.02.002
[19] M. Walter, K. S. H. Boyd-Wilson, D. McNaughton and G. Northcott, “Laboratory Trials on the Bioremediation of Aged Pentachlorophenol Residues,” International Biodeterioration and Biodegradation, Vol. 55, No. 3, 2005, pp. 121-130. doi:10.1016/j.ibiod.2004.09.002
[20] R. M. Atlas and R. Bartha, “Fate and Effects of Polluting Petroleum in the Marine Environment,” Residue Review, Vol. 49, No. 1, 2006, pp. 49-83.
[21] C. M. Kao, C. Y. Chen, S. C. Chen, H. Y. Chien and Y. L. Chen, “Application of In-Situ Biosparging to Remediate a Petroleum Hydrocarbon Spill Site: Field and Microbial Evaluation,” Chemosphere, Vol. 70, No. 8, 2008, pp. 1492-1499. doi:10.1016/j.chemosphere.2007.08.029
[22] L. Huang, T. Mab, D. Li, F. Liang, R. Liu and G. Li, “Optimization of Nutrient Component for Diesel Oil Degradation by Rhodococcus erythropolis,” Marine Pollution Bulletin, Vol. 56, No. 10, 2008, pp. 1714-1718. doi:10.1016/j.marpolbul.2008.07.007
[23] M. H. Borresen and A. G. Rike, “Effects of Nutrient Content, Moisture Content and Salinity on Mineralization of Hexadecane in an Arctic Soil Cold Region,” Science Technology, Vol. 48, 2007, pp. 129-138.
[24] R. Boopathy, “Factors Limiting Bioremediation Technologies,” Bioresource Technology, Vol. 74, No. 1, 2000, pp. 63-67. doi:10.1016/S0960-8524(99)00144-3
[25] C. N. Mulligan, R. N. Yong and B. F. Gibbs, “Surfactant Enhanced Remediation of Contaminated Soil: A Review,” Engineering Geology, Vol. 60, No. 1-4, 2001, pp. 371-380. doi:10.1016/S0013-7952(00)00117-4
[26] A. Franzetti, P. Gennaro, G. Bestetti, M. Lasagni and D. Pitea, et al., “Bioremediation of Diesel-Contaminated Soils: Evaluation of Potential In-Situ Techniques by Stu- dy of Bacterial Degradation,” Biodegradation, Vol. 12, No. 5, 2001, pp. 325-335. doi:10.1023/A:1014397732435
[27] L. G. Torres, N. Rojas, G. Bautista and R. Iturbe, “Effect of Temperature and Surfactant’s HLB and Dose over the TPH-Diesel Biodegradation Process in Aged Soils,” Process Biochemistry, Vol. 40, No. 10, 2005, pp. 3296-3302. doi:10.1016/j.procbio.2005.03.032
[28] T. T. Tsai, C. M. Kao, R. Y. Surampalli and H. Y. Chien, “Enhanced Bioremediation of Fuel-Oil Contaminated Soils: Laboratory Feasibility Study,” Journal of Environ- mental Engineering, Vol. 135, No. 9, 2009, pp. 845-853. doi:10.1061/(ASCE)EE.1943-7870.0000049
[29] S. Wang and C. N. Mulligan, “An Evaluation of Surfactant Foam Technology in Remediation of Contaminated Soil,” Chemosphere, Vol. 57, No. 9, 2004, pp. 1079-1089. doi:10.1016/j.chemosphere.2004.08.019
[30] H. Yu, L. Zhu and W. Zhou, “Enhanced Desorption and Biodegradation of Phenanthrene in Soil-Water Systems with the Presence of Anionic—Nonionic Mixed Surfactants,” Journal of Hazardous Materials, Vol. 142, 2007, pp. 354-361. doi:10.1016/j.jhazmat.2006.08.028 P
[31] S. E. Agarry and C. N. Owabor, “Anaerobic Bioremediation of Marine Sediment Artificially Contaminated with Anthracene and Naphthalene,” Environmental Technology, Vol. 32, No. 12, 2011, pp. 1375-1381. doi:10.1080/09593330.2010.536788
[32] M. Ahmadi, F. Vahabzadeh, B. Bonakdarpour, E. Mofarrah and M. Mehranian, “Application of the Central Composite Design and Response Surface Methodology to the Advanced Treatment of Olive Oil Processing Wastewater Using Fenton’s Peroxidation,” Journal of Hazardous Ma- terials, Vol. 123, No. 1-3, 2005, pp. 187-195. doi:10.1016/j.jhazmat.2005.03.042
[33] D. M. Pala, D. de Carvalho, J. Pinto and G. Sant’Anna Jr., “A Suitable Model to Describe Bioremediation of a Petroleum-Contaminated Soil,” International Biodeterioration and Biodegradation, Vol. 58, No. 6, 2006, pp. 254- 260. doi:10.1016/j.ibiod.2006.06.026
[34] F. Rigas, K. Papadopoulou, V. Dritsa and D. Doulia, “Bioremediation of a Soil Contaminated by Lindane Utilizing the Fungus Ganoderma australe via Response Surface Methodology,” Journal of Hazardous Materials, Vol. 140, No. 1-2, 2007, pp. 325-332. doi:10.1016/j.jhazmat.2006.09.035
[35] S. V. Mohan, B. P. Reddy and P. N. Sarma, “Ex Situ Slurry Phase Bioremediation of Chrysene Contaminated Soil with the Function of Metabolic Function: Process Evaluation by Data Enveloping Analysis (DEA) and Taguchi Design of Experimental Methodology (DOE),” Bioresource Technology, Vol. 100, No. 1, 2009, pp. 164- 172. doi:10.1016/j.biortech.2008.06.020
[36] A. C. Da Silva, F. J. S. de Oliveira, D. S. Bernardes and F. P. de Franca, “Bioremediation of Marine Sediments Impacted by Petroleum,” Applied Biochemistry and Biotechnology, Vol. 153, No. 1-3, 2009, pp. 58-66. doi:10.1007/s12010-008-8457-z
[37] L. Mohajeri, H. A. Aziz, M. H. Isa and M. A. Zahed, “A Statistical Experiment Design Approach for Optimizing Biodegradation of Weathered Crude Oil in Coastal Sediments,” Bioresource Technology, Vol. 101, No. 3, 2010, pp. 893-900. doi:10.1016/j.biortech.2009.09.013
[38] C. A. Black, “Method of Soil Analysis II,” American Society of Agronomy, Madison, 1965, pp. 573-590.
[39] APHA, “Standard Methods for the Examination of Water and Wastewater,” American Public Health Association, Washington DC, 1985.
[40] S. C. Amanchukwu, A. Obafemi and G. C. Okpokwasili, “Hydrocarbon Degradation and Utilization by a Palm Wine Yeast Isolates,” FEMS Microbiology Letters, Vol. 57, No. 2, 1989, pp. 151-154. doi:10.1111/j.1574-6968.1989.tb03290.x
[41] S. Barathi and N. Vasudevan, “Bioremediation of Crude Oil Contaminated Soil by Bioaugmentation of Pseudomonas fluorescens NS1,” Journal of Environmental Science and Health Part A, Vol. A38, No. 9, 2003, pp. 1857- 1866. doi:10.1081/ESE-120022884
[42] K. Das and A. K. Mukherjee, “Crude Petroleum-Oil Biodegradation Efficiency of Bacillus subtilis and Pseudomonas aeruginosa Strains Isolated from a Petroleum-Oil Contaminated Soil from North-East India,” Bioresource Technology, Vol. 98, No. 7, 2007, pp. 1339-1345. doi:10.1016/j.biortech.2006.05.032
[43] S. Mishra, J. Jyoti, R. C. Kuhad and B. Lal, “In Situ Bioremediation Potential of an Oily Sludge-Degrading Bacterial Consortium,” Current Microbiology, Vol. 43, No. 5, 2001, pp. 328-335. doi:10.1007/s002840010311
[44] D. J. L. Prak and P. H. Pritchard, “Degradation of Polycyclic Aromatic Hydrocarbons Dissolved in Tween 80 Surfactant Solutions by Sphingomonas paucimobilis EPA 505,” Canadian Journal of Microbiology, Vol. 48, No. 2, 2002, pp. 151-158. doi:10.1139/w02-004
[45] M. J. Ayotamuno, R. B. Kogbara, S. O. T. Ogaji and S. D. Probert, “Bioremediation of a Crude-Oil Polluted Agricultural-Soil at Port Harcourt, Nigeria,” Applied Energy, Vol. 83, No. 11, 2006, pp. 1249-1257. doi:10.1016/j.apenergy.2006.01.003
[46] K. C. Ubochi, V. I. Ibekwe and E. U. Ezeji, “Effect of Inorganic Fertilizer on Microbial Utilization of Hydrocarbons in Oil Contaminated Soil,” African Journal of Biotechnology, Vol. 5, No. 17, 2006, pp. 1584-1587.
[47] I. Sang-Hwan, I. Seokho, K. Dae Yaeon and K. Jeong- gyu, “Degradation Characteristics of Waste Lubricants under Different Nutrient Condition,” Journal of Hazard Materials, Vol. 143, No. 1-2, 2007, pp. 65-72. doi:10.1016/j.jhazmat.2006.08.059
[48] M. Chorom, H. S. Sharif and H. Mutamedi, “Bioremediation of a Crude Oil-Polluted Soil by Application of Fertilizers,” Iran Journal of Environmental Health Science Engineering, Vol. 7, No. 4, 2010, pp. 319-326.
[49] C. Calvo, M. Manzanera, G. A. Silva-Castro, I. Uad and J. González-López, “Application of Bioemulsi?ers in Soil Oil Bioremediation Processes, Future Prospects,” Science Total Environment, Vol. 407, No. 12, 2009, pp. 3634- 3640. doi:10.1016/j.scitotenv.2008.07.008
[50] L. O. Odokuma and A. A. Dickson, “Bioremediation of a Crude Oil Polluted Tropical Mangrove Environment,” Journal of Applied Science and Environmental Management, Vol. 7, No. 2, 2003, pp. 23-29.
[51] L. Mohajeri, M. H. Isa, H. A. Aziz, M. A. Zahed and H. Nasrolahzadeh, “Survey of Petroleum Hydrocarbons Bioremediation in Aquatic Environment,” Proceedings of South East Asia Conference on the Advancement of Sci- enti?c and Social Research, Putra Palace, 14-15 December 2005.
[52] L. Yuting, Z. Xu, D. Dongjuan and L. Guanghe, “Porous Biocarrier-Enhanced Biodegradation of Crude Oil Contaminated Soil,” International Biodeterioration & Biodegradation, Vol. 63, No. 1, 2009, pp. 80-87. doi:10.1016/j.ibiod.2008.07.005
[53] D. C. Montgomery, “Design and Analysis of Experiments,” 7th Edition, John Wiley, New York, 2008.
[54] X. Zhu, A. D. Venosa, M. T. Suidan and K. Lee, “Guidelines for the Bioremediation of Marine Shorelines and Freshwaters,” US Environmental Protection Agency Of?ce of Research and Development National Risk Management Research Laboratory Land Remediation and Pollution Control Division 26 W. Martin Luther King Drive Cincinnati, OH 45268, 2001.
[55] R. M. Atlas, “Petroleum Biodegradation and Oil Spill Bioremediation,” Marine Pollution Bulletin, Vol. 31, No. 4-12, 1995, pp. 178-182. doi:10.1016/0025-326X(95)00113-2
[56] N. F. Y. Tam, Y. S. Wong and M. H. Wong, “Novel Technology in Pollutant Removal at Source and Bioremediation,” Ocean Coastal Management, Vol. 52, No. 7, 2009, pp. 368-373. doi:10.1016/j.ocecoaman.2009.04.009
[57] F. J. Marquez-Rocha, J. Olmos-Soto, M. C. Rosano-Hernandez and M. Muriel-Garcia, “Determination of the Hydrocarbon-Degrading Metabolic Capabilities of Tropical Bacterial Isolates,” International Biodeterioration & Biodegradation, Vol. 55, No. 1, 2005, pp. 17-23. doi:10.1016/j.ibiod.2004.05.007
[58] M. L. Nievas, M. G. Commendatore, N. L. Olivera, J. L. Esteves and V. Bucalá, “Biodegradation of Bilge Waste from Patagonia with an Indigenous Microbial Community,” Bioresource Technology, Vol. 97, No. 18, 2006 pp. 2280-2290. doi:10.1016/j.biortech.2005.10.042
[59] R. Thavasi, S. Jayalakshmi, T. Balasubramanian and I. M. Banat, “Biodegradation of Crude Oil by Nitrogen Fixing Marine Bacteria Azotobacter chroococcwn,” Research Journal of Microbiology, Vol. 1, No. 1, 2006, pp. 401- 408. doi:10.3923/jm.2006.401.408

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.