Modelling, Simulation and Optimization of n-p-n-p Silicon Multilayer Solar Cells

DOI: 10.4236/ojm.2012.23004   PDF   HTML     4,581 Downloads   9,534 Views  


We simulate the conception parameters of a model of a silicon multilayer solar cell. The cell is composed by four layers of opposite conductivities forming three junctions inside the cell. The electric contacts are tailored vertically to collect the minority carrier generated under illumination. We developed the equations giving the output power, the fill factor and the efficiency of the cell, taking into account the series resistances of each layer. We optimized, using MATLAB software, the thicknesses of the layers, the impurity concentration level and the distance between the electric contacts. We showed that the optimized photovoltaic structure, with the silicon properties published at the Ioffe institute website, gives an efficiency of 20.66%. The n-p-n-p silicon cell delivers a short circuit current Icc = 45.3 mA/cm2, an open circuit voltage V oc= 0.746 V and an output power of 28.5 mW/cm2. The corresponding fill factor is FF = 84.29%.

Share and Cite:

A. Bouzidi, A. Bouazzi and M. Amlouk, "Modelling, Simulation and Optimization of n-p-n-p Silicon Multilayer Solar Cells," Open Journal of Microphysics, Vol. 2 No. 3, 2012, pp. 27-32. doi: 10.4236/ojm.2012.23004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. S. Bouazzi, M. Abaab and B. Rezig, “A New Model of Very High Efficiency Buried Emitter Silicon Solar Cell,” Solar Energy Material and Solar Cells, Vol. 46, No. 1, 1997, pp. 29-41. doi:10.1016/S0927-0248(96)00091-8
[2] J. Krc, K. Brecl, F. Smole and M. Topic, “The Effects of Enhanced Light Trapping in Tandem Micromorph Silicon Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 90, No. 18-19, 2006, pp. 3339-3344.
[3] J. Kwak, S. Won Kwon and K. S. Lim, “Fabrication of a n-p-p Tunnel Junction for a Protocrystalline Silicon Multilayer/Amorphous Silicon Tandem Solar Cell,” Journal of Non-Crystalline Solids, Vol. 352, No. 9-20, 2006, pp. 1847-1850.
[4] R. R. Arya, “Amorphous Silicon Based Solar Cell Technologies: Status, Challenges, and Opportunities,” Materials Research Society Symposium Proceedings, Vol. 808 2011, 11 pages. doi:10.1557/PROC-808-A7.5
[5] K. Brecl, F. Smole and J. Furlan, “Modelling of Multilayer Thin-Film Solar Cells,” Progress in Photovoltaics: Research and Applications, Vol. 7, No. 6, 1999, pp. 449- 456. doi:10.1002/(SICI)1099-159X(199911/12)7:6<449::AID-PIP286>3.0.CO;2-U
[6] A. Bouzidi, A. S. Bouazzi and B. Rezig, “Photocurrent Density Simulation in an n-p-n-p Silicon Multilayer Solar Cell,” The European Physical Journal Applied Physics, Vol. 31, No. 1, 2005, pp. 11-16. doi:10.1051/epjap:2005036
[7] A. Bouzidi, H. Hamzaoui, A. S. Bouazzi and B. Rezig, “Analytic Computation of the Photocurrent Density in a n-6H-SiC/p-Si/n-Si/p-Si0.8Ge0.2 Multilayer Solar Cell,” Microelectronics Journal, Vol. 37, No. 5, 2006, pp. 388-394. doi:10.1016/j.mejo.2005.06.011
[8] Ioffe Physical Technical Institute, 2012.
[9] A. S. Bouazzi, M. Abaab and B. Rezig, “The Effect of the Emitter Resistively on the Characteristics of a Silicon Solar Cell,” 14th European Photovoltaic Solar Energy Conference, Barcelona, 30 June-4 July 1997.
[10] M. A. Green and S. R. Wenham, “Novel Parallel Multijunction Solar Cell,” Applied Physics Letters, Vol. 65, No. 3, 1994, pp. 2907-2909. doi:10.1063/1.112526

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.