A Relativistic Density Functional Study of the U2F6 Molecule

DOI: 10.4236/jmp.2012.38113   PDF   HTML     3,317 Downloads   5,223 Views  


All-electronic relativistic density functional theory (DFT) method has been used to study the U2F6 molecule. Results from calculations predict the existence of U2F6 molecule, which has been found to be stable with a multiply bonded U2 unit. The calculations also predict that D3d symmetry of U2F6 is more stable than D3h. The optimized geometries, vibrational frequencies and infrared intensities are reported for D3d symmetry of U2F6 from Becke Three-parameter Lee-Yang-Parr (B3LYP) function with triple zeta valence plus polarization functions basis set (TZP). The bond dissociation energy (BDE) for U-U bond in the U2F6 was obtained using the same method. In addition, the entropies of U2F6 have been investigated at temperature rang from 0 to 3000K in 10 steps using the B3LYP method.

Share and Cite:

Y. Zhang, "A Relativistic Density Functional Study of the U2F6 Molecule," Journal of Modern Physics, Vol. 3 No. 8, 2012, pp. 865-869. doi: 10.4236/jmp.2012.38113.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. Gagliardi and B. O. Roos, “Quantum Chemical Calculations Show That the Uranium Molecule U2 Has a Quintuple Bond,” Nature, Vol. 433, 2005, pp. 848-851. doi:10.1038/nature03249
[2] B. O. Roos, P. Malmqvist and L. J. Gagliardi, “Exploring the Actinide-Actinide Bond:? Theoretical Studies of the Chemical Bond in Ac2, Th2, Pa2, and U2,” Journal of the American Chemical Society, Vol. 128, No. 51, 2006, pp. 17000-17006. doi:10.1021/ja066615z
[3] P. F. Souter, G. P. Kushto, L. Andrews and M. J. Neurock, “Experimental and Theoretical Evidence for the Formation of Several Uranium Hydride Molecules,” Journal of the American Chemical Society, Vol. 119, No. 7, 1997, pp. 1682-1687. doi:10.1021/ja9630809
[4] B. O. Roos and L. Gagliardi, “Quantum Chemistry Predicts Multiply Bonded Diuranium Compounds to Be Stable,” Inorganic Chemistry, Vol. 45, No. 2, 2006, pp. 803-807. doi:10.1021/ic051665a
[5] C. Lee, W. Yang and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Func- tional of the Electron Density,” Physics Review B, Vol. 37, No. 2, 1988, pp. 785-789. doi:10.1103/PhysRevB.37.785
[6] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A van Gisbergen, J. G. Snijders and T. Ziegler, “Chemistry with ADF,” Journal of Computational Chemistry, Vol. 22, No. 9, 2001, pp. 931-967. doi:10.1002/jcc.1056
[7] E. van Lenthe, E. J. Baerends and J. G. Snijders. “Rela- tivistic Regular Two Component Hamiltonians.” Journal of Chemical Physics, Vol. 99, No. 6, 1993, pp. 4597- 4610. doi:10.1063/1.466059
[8] E. van Lenthe, E. J. Baerends and J. G. Snijders, “Rela- tivistic Total Energy Using Regular Approximations,” Journal of Chemical Physics, Vol. 101, No. 11, 1994, pp. 9783-9792. doi:10.1063/1.467943
[9] E. van Lenthe, A. Ehlers and E. J. Baerends, “Geometry Optimizations in the Zero Order Regular Approximation for Relativistic Effects,” Journal of Chemical Physics, Vol. 110, No. 18, 1999, pp. 8943-8953. doi:10.1063/1.478813
[10] J. P. Perdew, K. Burke and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, No. 18, 1996. pp. 3865-3868. doi:10.1103/PhysRevLett.77.3865
[11] B. Hammer, L. B. Hansen and J. K. Norskov, “Improved Adsorption Energetics within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals,” Physics Review B, Vol. 59, No. 11, 1999, pp. 7413-7421. doi:10.1103/PhysRevB.59.7413
[12] K. Morokuma, “Molecular Orbital Studies of Hydrogen Bonds. III. C?O???H?O Hydrogen Bond in H2CO??? H2O and H2CO???2H2O,” Journal of Chemical Physics, Vol. 55, No. 3, 1971, pp. 1236-1244. doi:10.1063/1.1676210
[13] K. Morokuma, “Why Do Molecules Interact? The Origin of Electron Donor-Acceptor Complexes, Hydrogen Bond- ing and Proton Affinity,” Account of Chemical Research, Vol. 10, No. 8, 1997, pp. 294-300. doi:10.1021/ar50116a004
[14] T. Ziegler and A. Rauk, “On the Calculation of Bonding Energies by the Hartree Fock Slater Method,” Theorefic Chimica Acta, Vol. 46, No. 1, 1977, pp. 1-10.
[15] T. Ziegler and A. Rauk, “A Theoretical Study of the Ethylene-Metal Bond in Complexes between Copper(1+), Silver(1+), Gold(1+), Platinum(0) or Platinum(2+) and Ethylene, Based on the Hartree-Fock-Slater Transition- State Method,” Inorganic Chemistry, Vol. 18, No. 6, 1979, pp. 1558-1565. doi:10.1021/ic50196a034
[16] K. K. Pandey, “Energy Analysis of Metal-Metal Bonding in [RM-MR] (M = Zn, Cd, Hg; R = CH3, SiH3, GeH3, C5H5, C5Me5),” Journal of Organometallic Chemistry, Vol. 692, No. 5, 2007, pp. 1058-1063. doi:10.1016/j.jorganchem.2006.10.067
[17] V. M. Rayon and G. Frenking, “Structures, Bond En- ergies, Heats of Formation, and Quantitative Bonding Analysis of Main-Group Metallocenes [E(Cp)2] (E = Be- Ba, Zn, Si-Pb) and [E(Cp)] (E = Li-Cs, B-Tl),” Chemistry-a European Journal, Vol. 8, No. 20, 2002, pp. 4693- 4707.
[18] O. Kh. Poleshchuk, E. L. Shevchenko, V. Branchadell, M. Lein and G. Frenking. “Energy Analysis of the Chemical Bond in Group IV and V complexes: A Density Functional Theory Study,” International Journal of Quantum Chemistry, Vol. 101, No. 6, 2005, pp. 869-877. doi:10.1002/qua.20348
[19] F. M. Bickelhaupt, N. J. R. van EikemaHommes, C. Fonseca Guerra and E. J. Baerends, “The Carbon-Lithium Electron Pair Bond in (CH3Li)n (n = 1, 2, 4),” Organometallics, Vol. 15, No. 13, 1996, pp. 2923-2931. doi:10.1021/om950966x
[20] C. Fonseca. Guerra, F. M. Bickelhaupt, J. G. Snijders and E. J. Baerends, “The Nature of the Hydrogen Bond in DNA Base Pairs: The Role of Charge Transfer and Resonance Assistance,” Chemistry-a European Journal, Vol. 5, No. 12, pp. 3581-3594.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.