Deposition and Characterisation of Nitrogen-Doped Zinc Oxide Thin Films by MOCVD Using Zinc Acetate—Ammonium Acetate Precursor

Abstract

The synthesis and comprehensive analysis of nitrogen-doped zinc oxide thin films grown from a compound precursor of zinc acetate and ammonium acetate has been reported. The precursor was processed in different ratios of the zinc acetate-ammonium acetate additives, and each combination was used to deposit a thin film using metalorganic chemical vapour deposition (MOCVD) method. The produced thin films were characterised using Rutherford backscattering (RBS) spectroscopy, uv-visible spectrometry, x-ray diffractometry, four point probe measurements and optical microscopy. The deposited thin films showed a fairly consistent zinc:oxygen:nitrogen ratio of 4.4:3.7:1, the film structures were quasicrystalline and the sheet resistivities were high, while other familiar characteristics like optical transmittance, bandgap, thermal stability, etc. were maintained in the grown films. Applications in device fabrication and active sensor devices were hence envisaged as the emergent potentials of the thin films.

Share and Cite:

U. Mbamara, O. Akinwumi, E. Obiajunwa, I. Ojo and E. Ajayi, "Deposition and Characterisation of Nitrogen-Doped Zinc Oxide Thin Films by MOCVD Using Zinc Acetate—Ammonium Acetate Precursor," Journal of Modern Physics, Vol. 3 No. 8, 2012, pp. 652-659. doi: 10.4236/jmp.2012.38089.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. Look, “Recent Advances in ZnO Materials and Devices,” Materials Science and Engineering: B, Vol. 80, No. 1-3, 2001, pp. 383-387. doi:10.1016/S0921-5107(00)00604-8
[2] S. O. Kucheyev, “Ion-Beam-Produced Structural Defects in ZnO,” Physical Review B, Vol. 67, No. 9, 2003, Article ID: 094115. doi:10.1103/PhysRevB.67.094115
[3] H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton and J. Lin, “Hydrogen-Selec- tive Sensing at Room Temperature with ZnO Nanorods,” Applied Physics Letters, Vol. 86, No. 24, 2005, Article ID: 243503. doi:10.1063/1.1949707
[4] Science Daily, “New Small-Scale Generator Produces Al- ternating Current by Stretching Zinc Oxide Wires,” Sci- ence Daily, 2008. http://www.sciencedaily.com/releases/2008/11/081109193342.htm
[5] Access Data, “Database of Select Committee on GRAS Substances, SCOGS) Reviews,” 2009. http://www.accessdata.fda.gov/scripts/fcn/fcnDetailNavigation.cfm?rpt=scogsListing&id=372
[6] U. Rossler,“New Series, Group III. Vol. 17B, 22, 41B,” Springer, Heidelberg, 1999.
[7] ü. ?zgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do?an, V. Avrutin and S. J. Cho, “A Comprehensive Review of ZnO Materials and Devices,” Journal of Ap- plied Physics, Vol. 98, No. 4, 2005, Article ID: 041301. doi:10.1063/1.1992666
[8] A. C. Mofor, A. El-Shaer, A. Bakin, A. Waag, H. Ahlers, U. Siegner, S. Sievers and M. Albrecht, “Magnetic Prop- erty Investigations on Mn-Doped ZnO Layers On Sap- phire,” Applied Physics Letters, Vol. 87, No. 6, 2005, Article ID: 062501. doi:10.1063/1.2007864
[9] T. Ohgaki, N. Ohashi, S. Sugimura, H. Ryoken, I. Sakaguchi, Y. Adachi and H. Haneda, “Positive Hall Coefficients Obtained from Contact Misplacement on Evident N-Type ZnO Films and Crystals,” Journal of Materials Research, Vol. 23, No. 9, 2008, pp. 2293-2295. doi:10.1557/jmr.2008.0300
[10] J. S. Wellings, N. B. Chaure, S. N. Heavens and I. M. Dharmadasa, “Growth and Characterisation of Electrode- posited ZnO Thin Films,” Thin Solid Films, Vol. 516, No. 12, 2007, pp. 3893-3898. doi:10.1016/j.tsf.2007.07.156
[11] B. Sang, A. Yamada and M. Konagai, “Highly Stable ZnO Thin Films by Atomic Layer Deposition,” Japanese Jour- nal of Applied Physics, Vol. 37, 1998, pp. L1125-L1128. doi:10.1143/JJAP.37.L1125
[12] V. Srikant and D. R. Clarke, “Optical Absorption Edge of ZnO Thin Films: The Effect of Substrate,” Journal of Ap- plied Physics, Vol. 81, No. 9, 1997, pp. 6357-6364. doi:10.1063/1.364393
[13] S. O’Brien, M. G. Nolan, M. Copuruglu, J. A. Hamilton, Povey, I. Pereira, L. Martins, R. Fortunato and E. Pemble, “Zinc Oxide Thin Films: Characterisation and Potential Applications,” Thin Solid Films, Vol. 518, No. 16, 2010, pp. 4515-4519. doi:10.1016/j.tsf.2009.12.020
[14] S. T. Tan, B. J. Chen, X. W. Sun, M. B. Yu, X. H. Zhang and S. J. Chua, “Realization of Intrinsic p-Type ZnO Thin Films by MOCVD,” Journal of Electronic Materials, Vol. Vol. 34, No. 8, 2005, pp. 1172-1176. doi:10.1007/s11664-005-0247-6
[15] O. Maksimov, “Recent Advances and Novel Approaches of p-Type Doping of Zinc Oxide,” Reviews on Advanced Materials Science, Vol. 24, No. 1-2, 2010, pp. 26-34.
[16] S. X. Li, “Nitrogen Doped Zinc Oxide Thin Film, Nitrogen Doped Zinc Oxide Thin Film,” Master’s Thesis, University of California, Berkeley, 2003. http://www.repositories.cdlib.org/lbnl/LBNL-541166
[17] E. Fortunato, P. Barquinha, A. Pimentel, A. Gon?alves, L. Pereira, A. Marques and R. Martins, “Next Generation of Thin Film Transistors Based on Zinc Oxide,” Materials Research Society, Vol. 811, 2004. doi:10.1557/PROC-811-E1.9
[18] J. Weng, Y. Zhang, G. Han, Y. Zhang, L. Xu, J. Xu, X. Huang and K. Chen, “Electrochemical Deposition and Characterization of Wide Band Semiconductor ZnO Thin Film,” Thin Solid Films, Vol. 478, No. 1-2, 2005, pp. 25- 29. doi:10.1016/j.tsf.2004.09.047
[19] M. Joseph, H. Tabata and T. Kawai, “p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping,” Japanese Journal of Applied Physics, Vol. 38, 1999, pp. L1205-L1207. doi:10.1143/JJAP.38.L1205
[20] W. L. Dang, Y. Q. Fu, J. K. Luo, A. J. Flewitt and W. I. Milne, “Deposition and Characterization of Sputtered ZnO Films,” Superlattices and Microstructures, Vol. 42, No. 1-6, 2007, pp. 89-93. doi:10.1016/j.spmi.2007.04.081

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.